Secure Euclidean random distribution for patients’ magnetic resonance imaging privacy protection

Ali Jaber Tayh Albderi, Lamjed Ben Said

Abstract


Patients’ information and images transfer among medical institutes represent a major tool for delivering better healthcare services. However, privacy and security for healthcare information are big challenges in telemedicine. Evidently, even a small change in patients’ information might lead to wrong diagnosis. This paper suggests a new model for hiding patient information inside magnetic resonance imaging (MRI) cover image based on Euclidean distribution. Both least signification bit (LSB) and most signification bit (MSB) techniques are implemented for the physical hiding. A new method is proposed with a very high level of security information based on distributing the secret text in a random way on the cover image. Experimentally, the proposed method has high peak signal to noise ratio (PSNR), structural similarity index metric (SSIM) and reduced mean square error (MSE). Finally, the obtained results are compared with approaches in the last five years and found to be better by increasing the security for patient information for telemedicine.

Keywords


Euclidean distribution; Image steganography; Least signification bit; Most signification bit; Patients’ magnetic resonance imaging privacy

Full Text:

PDF


DOI: https://doi.org/10.11591/eei.v13i2.5989

Refbacks

  • There are currently no refbacks.


Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

Bulletin of EEI Stats

Bulletin of Electrical Engineering and Informatics (BEEI)
ISSN: 2089-3191, e-ISSN: 2302-9285
This journal is published by the Institute of Advanced Engineering and Science (IAES) in collaboration with Intelektual Pustaka Media Utama (IPMU).