Enhancing speech emotion recognition with deep learning using multi-feature stacking and data augmentation
Khasyi Al Mukarram, M. Anang Mukhlas, Amalia Zahra
Abstract
This study evaluates the effectiveness of data augmentation on 1D convolutional neural network (CNN) and transformer models for speech emotion recognition (SER) on the Ryerson audio-visual database of emotional speech and song (RAVDESS) dataset. The results show that data augmentation has a positive impact on improving emotion classification accuracy. Techniques such as noising, pitching, stretching, shifting, and speeding are applied to increase data variation and overcome class imbalance. The 1D CNN model with data augmentation achieved 94.5% accuracy, while the transformer model with data augmentation performed even better at 97.5%. This research is expected to contribute better insights for the development of accurate emotion recognition methods by using data augmentation with these models to improve classification accuracy on the RAVDESS dataset. Further research can explore larger and more diverse datasets and alternative model approaches.
Keywords
Convolutional neural network; Data augmentation; Multi-feature stacking; Speech emotion recognition; Transformer
DOI:
https://doi.org/10.11591/eei.v13i3.6049
Refbacks
There are currently no refbacks.
This work is licensed under a
Creative Commons Attribution-ShareAlike 4.0 International License .
<div class="statcounter"><a title="hit counter" href="http://statcounter.com/free-hit-counter/" target="_blank"><img class="statcounter" src="http://c.statcounter.com/10241695/0/5a758c6a/0/" alt="hit counter"></a></div>
Bulletin of EEI Stats
Bulletin of Electrical Engineering and Informatics (BEEI) ISSN: 2089-3191, e-ISSN: 2302-9285 This journal is published by the Institute of Advanced Engineering and Science (IAES) in collaboration with Intelektual Pustaka Media Utama (IPMU) .