Enhancing speech emotion recognition with deep learning using multi-feature stacking and data augmentation

Khasyi Al Mukarram, M. Anang Mukhlas, Amalia Zahra

Abstract


This study evaluates the effectiveness of data augmentation on 1D convolutional neural network (CNN) and transformer models for speech emotion recognition (SER) on the Ryerson audio-visual database of emotional speech and song (RAVDESS) dataset. The results show that data augmentation has a positive impact on improving emotion classification accuracy. Techniques such as noising, pitching, stretching, shifting, and speeding are applied to increase data variation and overcome class imbalance. The 1D CNN model with data augmentation achieved 94.5% accuracy, while the transformer model with data augmentation performed even better at 97.5%. This research is expected to contribute better insights for the development of accurate emotion recognition methods by using data augmentation with these models to improve classification accuracy on the RAVDESS dataset. Further research can explore larger and more diverse datasets and alternative model approaches.

Keywords


Convolutional neural network; Data augmentation; Multi-feature stacking; Speech emotion recognition; Transformer

Full Text:

PDF


DOI: https://doi.org/10.11591/eei.v13i3.6049

Refbacks

  • There are currently no refbacks.


Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

Bulletin of EEI Stats

Bulletin of Electrical Engineering and Informatics (BEEI)
ISSN: 2089-3191, e-ISSN: 2302-9285
This journal is published by the Institute of Advanced Engineering and Science (IAES) in collaboration with Intelektual Pustaka Media Utama (IPMU).