Predicting lung cancer risk using explainable artificial intelligence
Shahin Shoukat Makubhai, Ganesh R. Pathak, Pankaj R. Chandre
Abstract
Lung cancer is a lethal disease that claims numerous lives annually, and early detection is essential for improving survival rates. Machine learning has shown promise in predicting lung cancer risk, but the lack of transparency and interpretability in black-box models impedes the understanding of factors that contribute to risk. Explainable artificial intelligence (XAI) can overcome this limitation by providing a clear and understandable approach to machine learning. In this study, we will use a large patient record dataset to train an XAI-based model that considers various patient information, including lifestyle factors, clinical data, and medical history, for predicting lung cancer risk. We will use different XAI techniques, including decision trees, partial dependence plots, and feature importance, to interpret the model’s predictions. These methods will provide healthcare professionals with a transparent and interpretable framework for screening and treatment decisions concerning lung cancer risk.
Keywords
Explainable artificial intelligence; Interpretability; Lung cancer; Machine learning; Prediction; Risk factors
DOI:
https://doi.org/10.11591/eei.v13i2.6280
Refbacks
There are currently no refbacks.
This work is licensed under a
Creative Commons Attribution-ShareAlike 4.0 International License .
<div class="statcounter"><a title="hit counter" href="http://statcounter.com/free-hit-counter/" target="_blank"><img class="statcounter" src="http://c.statcounter.com/10241695/0/5a758c6a/0/" alt="hit counter"></a></div>
Bulletin of EEI Stats
Bulletin of Electrical Engineering and Informatics (BEEI) ISSN: 2089-3191, e-ISSN: 2302-9285 This journal is published by the Institute of Advanced Engineering and Science (IAES) in collaboration with Intelektual Pustaka Media Utama (IPMU) .