Simulation of autonomous navigation of turtlebot robot system based on robot operating system

Mohammed Talal Ghazal, Murtadha Al-Ghadhanfari, Najwan Zuhair Waisi

Abstract


Complex system science has recently shifted its focus to include modeling, simulation, and behavior control. An effective simulation software built on robot operating system (ROS) is used in robotics development to facilitate the smooth transition between the simulation environment and the hardware testing of control behavior. In this paper, we demonstrate how the simultaneous localization and mapping (SLAM) algorithm can be used to allow a robot to navigate autonomously. The Gazebo is used to simulate the robot, and Rviz is used to visualize the simulated data. The G-mapping package is used to create maps using collected data from a variety of sensors, including laser and odometry. To test and implement autonomous navigation, a Turtlebot was used in a Gazebo-generated simulated environment. In our opinion, additional study on ROS using these important tools might lead to a greater adoption of robotics tests performed, further evaluation automation, and efficient robotic systems.

Keywords


Gazebo; Robot; Robot operating system; Rviz; Simultaneous localization and mapping

Full Text:

PDF


DOI: https://doi.org/10.11591/eei.v13i2.6419

Refbacks

  • There are currently no refbacks.


Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

Bulletin of EEI Stats

Bulletin of Electrical Engineering and Informatics (BEEI)
ISSN: 2089-3191, e-ISSN: 2302-9285
This journal is published by the Institute of Advanced Engineering and Science (IAES) in collaboration with Intelektual Pustaka Media Utama (IPMU).