Pre-trained Bi-LSTM model for automated classification of ventricular arrhythmias using 1-D and 2-D ECG

M Krishna Chaitanya, Lakhan Dev Sharma

Abstract


Number of cardiac conditions have been associated with abnormal heartbeat (arrhythmia) such as ventricular fibrillation (Vfib), ventricular flutter (Vfl), and ventricular tachycardia (Vta). This is a difficult and essential job for timely clinical assessment and identification of these potentially life-threatening heart arrhythmias. With the aid of a one-dimensional electrocardiogram (ECG) signal and its associated two-dimensional image, the suggested method provides a strategy for the detection of time-frequency interpretation (Vfib, Vfl, and Vta). A four-stage cascaded Savitzky-Golay (SG) filter is used after a 2-stage median filter to preprocess the ECG signal. This technique employs z-score normalisation after brief (2 sec) ECG readings. The classification of these ECG segments (1-D) and associated time-frequency representation pictures (2-D) was explored separately using a bi-directional long short-term memory-based network. Eight distinct categorization scenarios were examined, and then an average accuracy of 99.67% for 1-D ECG and 99.87% for 2-D ECG signal was attained.

Keywords


Bi-long short-term memory; Cardiac arrhythmias; Time-frequency representation; Ventricular fibrillation; Ventricular flutter; Ventricular tachycardia

Full Text:

PDF


DOI: https://doi.org/10.11591/eei.v13i4.6705

Refbacks

  • There are currently no refbacks.


Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

Bulletin of EEI Stats

Bulletin of Electrical Engineering and Informatics (BEEI)
ISSN: 2089-3191, e-ISSN: 2302-9285
This journal is published by the Institute of Advanced Engineering and Science (IAES) in collaboration with Intelektual Pustaka Media Utama (IPMU).