Low insertion loss open-loop resonator–based microstrip diplexer with high selective for wireless applications

Rania Hamdy Elabd, Ahmed Jamal Abdullah Al-Gburi, Khaled Alhassoon, Mohd Muzafar Ismail, Zahriladha Zakaria

Abstract


This paper presents a low-insertion-loss open-loop resonator (OLR)-based microstrip diplexer with high-selective for wireless applications. We used two series capacitive gaps in the microstrip transmission line, loaded with rectangular-shaped half-wavelength OLRs, to create a high-selectivity bandpass filter (BPF). The planned BPFs are linked through a T-junction combiner, precisely tuned to align with both filters and the antenna port in order to produce the proposed diplexer. The system is implemented on a rogers TMM4 substrate with a loss tangent of 0.002, a dielectric constant of 4.7, and a thickness of 1.52 mm. The suggested diplexer has dimensions of (90×70) mm². It achieves a modest frequency space ratio of R=0.1646 in both transmit and receive modes by having two resonance frequencies of ft=2.191 GHz and fr=2.584 GHz, respectively. The simulated structure displays good insertion losses of approximately 1.2 dB and 1.79 dB for the two channels, respectively, at fractional bandwidths of 1.24% at 2.191 GHz and 0.636% at 2.584 GHz. The simulated isolation values for 2.191 GHz and 2.584 GHz are 53.3 dB and 66.5 dB, respectively.


Keywords


Band pass filter; Selectivity; Insersion loss; Microstrip diplexer; Open loop resonator

Full Text:

PDF


DOI: https://doi.org/10.11591/eei.v13i3.6789

Refbacks

  • There are currently no refbacks.


Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

Bulletin of EEI Stats

Bulletin of Electrical Engineering and Informatics (BEEI)
ISSN: 2089-3191, e-ISSN: 2302-9285
This journal is published by the Institute of Advanced Engineering and Science (IAES) in collaboration with Intelektual Pustaka Media Utama (IPMU).