A novel method of detecting malware on Android mobile devices with explainable artificial intelligence

Seema Sachin Vanjire, Mohandoss Lakshmi


The increasing prevalence of malware targeting android mobile devices has raised significant concerns regarding user privacy and security. In response, effective methods for malware classification and detection are crucial to protect users from malicious applications. This paper presents an approach that leverages deep learning techniques and explainable artificial intelligence (XAI) for android mobile malware classification and detection. Convolutional neural networks (CNNs) are deep learning model that has shown impressive performance in several application areas, including image and text classification. In the context of android mobile malware, CNNs have shown promising results in capturing intricate patterns and features inherent in malware samples. By training these models on large datasets of benign and malicious applications, accurate classification can be achieved. To enhance transparency and interpretability, XAI techniques are integrated into the classification process. These techniques provide insights into the decision-making process of the deep learning models, enabling the identification of critical features and characteristics that contribute to the classification results. This research, by combining deep learning and XAI methods, presents a fresh strategy for identifying and categorizing Android malware. This research paper will focus on a fascinating CNN-based malware categorization technique.


Android malware; Deep learning; Explainable artificial intelligence; Malware classification; Malware detection

Full Text:


DOI: https://doi.org/10.11591/eei.v13i3.6986


  • There are currently no refbacks.

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

Bulletin of EEI Stats

Bulletin of Electrical Engineering and Informatics (BEEI)
ISSN: 2089-3191, e-ISSN: 2302-9285
This journal is published by the Institute of Advanced Engineering and Science (IAES) in collaboration with Intelektual Pustaka Media Utama (IPMU).