Pre-slippage detection and counter-slippage for e-pattern omniwheeled cellular conveyor

Joe Siang Keek, Ser Lee Loh, Ainain Nur Hanafi, Tau Han Cheong


This paper presents continuation work of e-pattern omniwheeled cellular conveyor (EOCC) since its first introduction. EOCC is a conveyor that is modular and is made up of omniwheels arranged horizontally and vertically. Although in the last published paper, the EOCC had been proven to be capable of transporting box omnidirectionally and achieving yaw control concurrently, however, due to the natural properties of omniwheel, the performance is jeopardized by slippage. While minor slippage can be negligible, but a major slippage can eventually destroy the whole trajectory tracking performance. Therefore, counter-slippage methods are proposed in this paper. The simulation results show that the proposed counter-slippage method significantly improves the trajectory tracking performance up to 42% of reduction in integral of absolute error. Moreover, in this paper, pre-slippage detection method, which aims to perform early detection of slippage, is being presented as well. Although these proposed methods are simple, but they are proven to have achieved improved tracking performance than conventional controller, as presented in this paper.


Cellular; Conveyor; Modular; Omnidirectional; Omniwheel; Slippage

Full Text:




  • There are currently no refbacks.

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

Bulletin of EEI Stats

Bulletin of Electrical Engineering and Informatics (BEEI)
ISSN: 2089-3191, e-ISSN: 2302-9285
This journal is published by the Institute of Advanced Engineering and Science (IAES) in collaboration with Intelektual Pustaka Media Utama (IPMU).