Addressing the complexities of postoperative brain MRI cavity segmentation–a comprehensive review

Sobha Xavier P, Sathish P K, Raju G

Abstract


Postoperative brain magnetic resonance images (MRI) is pivotal for evaluating tumor resection and monitoring post-surgical changes. The segmentation of surgical cavities in these images poses challenges due to artifacts, tissue reorganization, and heterogeneous appearances. This study explores challenges and advancements in postoperative brain MRI segmentation, examining publicly accessible datasets and the efficacy of various deep learning models. The analysis focuses on different U-Net models (U-Net, V-Net, ResU-Net, attention U-Net, dense U-Net, and dilated U-Net) using the EPISURG dataset. The training dice scores are as follows: U-Net 0.8150, attention U-Net 0.8534, V-Net 0.7602, ResU-Net 0.7945, dense U-Net 0.83, dilated U-Net 0.80. The study thoroughly assesses existing postoperative cavity segmentation models and proposes a fine-tuning approach to enhance the performance further, particularly for the best-performing model, attention U-Net. This fine-tuning involves introducing dilated convolutions and residual connections to the existing attention U-Net model, resulting in improved results. These improvements underscore the necessity for ongoing research to select and adapt efficient models, retrain specific layers with a comprehensive collection of post-operative images, and fine-tune model parameters to enhance feature extraction during the encoding phase.

Keywords


Deep learning models; Fine-tuning and enhancement; Magnetic resonance images; Postoperative brain; Segmentation; U-net architectures

Full Text:

PDF


DOI: https://doi.org/10.11591/eei.v13i5.7930

Refbacks

  • There are currently no refbacks.


Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

Bulletin of EEI Stats

Bulletin of Electrical Engineering and Informatics (BEEI)
ISSN: 2089-3191, e-ISSN: 2302-9285
This journal is published by the Institute of Advanced Engineering and Science (IAES) in collaboration with Intelektual Pustaka Media Utama (IPMU).