Predicting graduation in Moroccan open-access bachelors: early indicators and re-enrollment data

Khalid Oqaidi, Sarah Aouhassi, Khalifa Mansouri

Abstract


The primary aim of higher education institutions is the successful graduation of their students. This study explores open-access higher education in Morocco, introducing a predictive model for assessing the probability of students achieving a science bachelor's degree. We analyzed data from 2012 to 2022, initially encompassing 45,573 student entries, and narrowed it down to 14,054 records after data cleaning. Focusing on early academic indicators from enrollment onwards-excluding current program performance—we used popular machine learning classifiers to examine the predictive capacity for student graduation and early dropout. Our comparison included analyses with and without re-enrollment data. Upon analyzing various machine learning algorithms, we attained accuracies between 79% and 86%, identifying random forest (RF) as the superior model for predicting outcomes both with and without incorporating re-enrollment data. This analysis was grounded on initial indicators observed during enrollment and throughout subsequent years, deliberately excluding current academic performance metrics from consideration.

Keywords


Dropout prediction; Educational data mining; Higher education; Machine learning; Open access graduation

Full Text:

PDF


DOI: https://doi.org/10.11591/eei.v14i1.8580

Refbacks

  • There are currently no refbacks.


Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

Bulletin of EEI Stats

Bulletin of Electrical Engineering and Informatics (BEEI)
ISSN: 2089-3191, e-ISSN: 2302-9285
This journal is published by the Institute of Advanced Engineering and Science (IAES) in collaboration with Intelektual Pustaka Media Utama (IPMU).