Exploiting user grouping and energy harvesting in downlink cellular system

Minh-Sang Van Nguyen¹, Huu Phuc Dang², Nhan Duc Nguyen³
¹Faculty of Electronics Technology, Industrial University of Ho Chi Minh City (IUH), Ho Chi Minh City, Vietnam
²Department of Electrical-Electronics, School of Engineering and Technology, Tra Vinh University, Tra Vinh, Vietnam
³Faculty of Engineering, Van Lang University, Ho Chi Minh City, Vietnam

Article Info

Article history:
Received Mar 18, 2021
Revised Dec 20, 2021
Accepted Jan 31, 2022

Keywords:
Non-orthogonal multiple access
Outage probability
Simultaneous wireless information and power transfer

ABSTRACT

A mobile communication system combining energy harvesting with a cooperative non-orthogonal multiple access (NOMA) system is presented in this research. In the proposed scheme, the relay is assumed to have a limited power source, and it will harvest radio energy from the base station (BS) to serve the near and far users. In this scenario, we consider two possible situations during information transmission in the NOMA application system: perfect successive interference cancellation (SIC) and imperfect successive interference cancellation. The system performance is assessed primarily based on closed-form outage probability expressions. Numerical simulations are conducted to examine the outage probability of the proposed scheme and to verify the derived formulas. The study results have proved that the system performance is still good under the imperfect SIC condition, and several optimal parameters to improve the system performance have been found. Moreover, our research results have shown the superior performance of the proposed model compared with current orthogonal multiple access (OMA) networks.

This is an open access article under the CC BY-SA license.

Corresponding Author:
Nhan Duc Nguyen
Faculty of Engineering, Van Lang University
45 Nguyen Khac Nhu St., Co Giang Ward, Dist. 1, Ho Chi Minh City, Vietnam
Email: nhan.nd@vlu.edu.vn

1. INTRODUCTION

Considered a promising wireless access solution for the fifth generation (5G) era, NOMA has great attentions [1]–[10]. According to the non-orthogonal multiple access (NOMA) principle, the transmission request is not orthogonal at the transmitter and the user’s signal is stacked in the power domain. As a result, greater spectrum efficiency is possible. More advances compared with traditional orthogonal multiple access (OMA), NOMA-aided transmitter can send signals to multiple terminals over the same resource block, and effective improvement can be obtained in term of sum rate. At the receiver, NOMA systems use successive interference cancellation (SIC) to decode the users’ signal. In term of decoding order, other users are considered noise by systems, which prioritize decoding the user with the best channel state.

NOMA was reviewed in reference [11]–[13], and the authors compared typical multiple access approaches to NOMA. Specifically, NOMA is recommended to apply to 5G communication system. NOMA can improve spectrum efficiency due to non-orthogonal transmission and SIC (SE). The normal energy supply is limited for the users in NOMA-aided systems, for example it is difficult to replace the battery in some places and/or limits the system performance improvement. To overcome this difficulty, energy harvesting (EH) architecture is studied to harvest the energy from the surrounding environments. To provide flexible, sustainable and
stable energy supply, radio frequency (RF) energy harvesting [14] allow users to harvest the energy from the radio-frequency signals. For example, simultaneous wireless information and power transfer (SWIPT) has been widely explored in emerging systems [15]–[20]. Reference [18] proposed an optimal wireless power method to improve the outage probability by utilizing the harvested RF energy. The RF energy harvesting strategy used in [19] benefits cognitive radio sensor networks.

The authors in [21] studied the resource optimization problem of NOMA heterogeneous small cell networks with SWIPT. Reference [22] took a two-user model for the downlink network and used an EH based incremental relaying cooperative NOMA (IR-EH-NOMA) technique. They developed analytical formulas for the IR-EH-NOMA network’s system throughput. In the delay-limited transmission mode, they evaluated the performance of a standard cooperative relaying NOMA network with EH (CR-EH-NOMA), two real situations are examined such as maximal ratio combining (MRC) and imperfect successive interference cancellation.

In addition, the main contribution and novelty of this paper are as follows: 1) we propose a novel relaying communication model that is based on the NOMA protocol and incorporates EH. Especially, the imperfect SIC problem in NOMA is also considered. 2) the closed-forms of outage probability as function of transmit signal-to-noise ratio (SNR) are calculated. Based on the proposed model, we have found some optimal parameters to enhance the system performance. Next, the outage performance is provided in Monte Carlo simulations to validate our analysis. Our research results have shown that the proposed model can improve the performance of the current OMA networks, as well as it demonstrates the feasibility of NOMA applying in the future networks.

2. SYSTEM MODEL

We consider the relaying system containing the BS with \(m \) (where \(m = 1, \ldots, M \)) antennas intends to serve the near (\(U_1 \)) and far user (\(U_2 \)) in the context of NOMA, shown as Figure 1. The BS communicates directly with \(U_1 \) and indirectly with \(U_2 \) through relay (\(R \)) which is able to harvest energy from the BS. In the first phase of communication, the BS will choose the best antenna to broadcasts the superposition signal \(x(t) = \sqrt{b_1}x_1 + \sqrt{b_2}x_2 \) to \(U_1 \) and \(R \), where \(x_i, i = (1, 2) \) denotes the information symbol to \(U_i \), and \(b_i \) denotes the power allocation factor, provided that \(b_1 + b_2 = 1 \) and \(b_1 < b_2 \). After receiving the signal from BS, \(R \) will perform decoding and forwarding the signal \(x_2 \) to \(U_2 \) in next phase with the help of SIC technology.

In the NOMA protocol, whether the data transmission is successful or not depends mainly on SIC technology. In the following part, we will analyze two possible cases: perfect SIC and imperfect SIC.

\[y_{SU_1} = \sqrt{P_1} f_{1,m} \left(\sqrt{b_1} x_1 + \sqrt{b_2} x_2 \right) + n_{U_1}, \]

where \(f_{1,m} \sim CN \left(0, \eta_1 \right) \) is the channel coefficient between the BS-\(U_1 \), \(n_{U_1} \) denotes the additive white Gaussian noise (AWGN) at \(D_i \), with \(n_{U_1} \sim CN \left(0, N_0 \right) \), \(P_1 \) is the power of the BS.

Exploiting user grouping and energy harvesting in downlink cellular system (Minh-Sang Van Nguyen)
Regarding the link BS-U₁, the received signal-to-interference-plus-noise ratio (SINR) at U₁ to detect U₂’s message and its own message, i.e. x₁, are provided by:

\[
\gamma_{SU_1} = \frac{P_1 b_1 |f_{1,m}|^2}{P_2 b_1 |f_{1,m}|^2 + N_0}, \quad \gamma_{SU_1} = \frac{P_1 b_1 |f_{1,m}|^2}{N_0}.
\] (2)

The R harvests energy from the BS in the first phase and uses this energy to relay the signal to U₁ and U₂ in the next phase. Therefore, by employing power splitting protocol (PS) [20], [21], the signal received at R in the first period is represented as:

\[
y_{SR} = (1 - \theta) \sqrt{P_1} f_{2,m} \left(\sqrt{b_1} x_1 + \sqrt{b_2} x_2 \right) + n_R,
\] (3)

where \(f_{2,m} \sim CN \left(0, \eta_2\right) \) is the channel coefficient between the BS–R, \(n_R \) represents the AWGN at R with \(n_R \sim CN \left(0, N_0\right) \), \(\theta \) is the power separation factor.

Also in the first stage, the signal-to-interference-noise ratio (SINR) at R for message detection of U₂ and for its message detection, i.e. x₁, is calculated by:

\[
\gamma_{SR} = \frac{(1 - \theta) P_1 b_2 |f_{2,m}|^2}{(1 - \theta) P_1 b_1 |f_{2,m}|^2 + N_0}, \quad \gamma_{SR} = \frac{(1 - \theta) P_1 b_1 |f_{2,m}|^2}{N_0}.
\] (4)

In the second stage of communication, the signal received at U₁, i = (1, 2) is being as:

\[
y_{RU_1} = \sqrt{P_2} f_\lambda \left(\sqrt{b_1} x_1 + \sqrt{b_2} x_2 \right) + n_{U_1},
\] (5)

where \(\lambda = \{3, 4\} \), \(P_2 \) is the power of the R, \(f_3 \sim CN \left(0, \eta_3\right) \) and \(f_4 \sim CN \left(0, \eta_4\right) \) are the channel factor of the links R-U₁ and R-U₂. Similarly, the SINR at U₂ to detect its own message, i.e x₂, is provided by:

\[
\gamma_{RU_2} = \frac{P_2 b_2 |f_{4}|^2}{P_2 b_1 |f_{4}|^2 + N_0}.
\] (6)

The SINR at U₁ to detect U₂’s message and to detect its own message, i.e. x₁, in this stage are calculated by:

\[
\gamma_{RU_1} = \frac{P_2 b_2 |f_{4}|^2}{P_2 b_1 |f_{4}|^2 + N_0}, \quad \gamma_{RU_1} = \frac{P_2 b_2 |f_{4}|^2}{N_0}.
\] (7)

We assume that U₁ regarding two associated links and hence, the decision rule for selecting one of the links at U₁ in the case of the full selection combining (SC) [22]. Therefore, the instantaneous SINR at user U₁ is written as:

\[
\Gamma_{U_1} = \max \left\{ \min \left(\gamma_{RU_1}, \gamma_{SU_1} \right), \min \left(\gamma_{SU_1}, \gamma_{RU_1}, \gamma_{RU_1} \right) \right\}.
\] (8)

Moreover, the energy obtained at relay R is provided by \(P_2 = \beta \beta P_1 |f_{2,m}|^2 \) [19], where \(\beta \) is energy conversion efficiency.

The chosen antenna can be selected to strengthen the BS-U₁, BS-R link as \(m^* = \arg \max_{m=1, \ldots, M} \left(|f_{1,m}^*|\right)^2 \) [23]. Base on [24], the selected channel has CDF, and PDF of \(|f_{1,m}^*|^2\), respectively as:

\[
F_{|f_{1,m}^*|^2}(x) = 1 - \sum_{m=1}^{M} C_m^M (-1)^{m-1} \exp \left(-\frac{m^2}{\eta}\right), \quad f_{|f_{1,m}^*|^2}(x)
\] = \sum_{m=1}^{M} C_m^M (-1)^{m-1} \frac{1}{\eta^m} \exp \left(-\frac{m^2}{\eta}\right).
\] (9)

2.2. Scheme 2: imperfect successive interference cancellation

In this section, because the imperfections of SIC in real networks are entirely possible, we examine and evaluate the system’s performance assuming imperfect SIC at the relay and U₁. Regarding to the imperfect
SIC, the received SINR at BS-U_1 to detect its own message x_1, the received SINR at BS-R to detect its own message x_1 and the received SINR at $R-U_1$ to detect its own message x_1 are given by:

\[
\gamma_{SU_1}^{(x_1,x_1)} = \frac{P_0 b_1 |f_1|^2}{P_1 b_2 |f_1|^2 + N_0}, \quad \gamma_{SR}^{(x_1,x_1)} = \frac{(1-\theta) P_0 b_1 |f_2|^2}{(1-\theta) P_1 b_2 |f_2|^2 + N_0}, \quad \gamma_{RU_1}^{(x_1,x_1)} = \frac{P_0 b_1 |f_3|^2}{P_1 b_2 |f_3|^2 + N_0},
\]

where $f_k \sim CN (0, \chi_k b_k), (k = 1, m; 2, m; 3), \chi_i (0 \leq \chi_i \leq 1)$ denote the level of residual interference at BS-U_1, BS-R, R-U_1 because of SIC imperfection. As a particular case, $\chi_i = 0$ and $\chi_i = 1$ represent perfect SIC and no SIC, respectively.

3. OUTAGE PROBABILITY

3.1. Scheme 1: perfect successive interference cancellation

3.1.1. Outage probability of U_1

Based on (5), the outage probability (OP) for U_1 can be obtained as [23], [24]:

\[
\Phi_1 = \Pr\left\{\min_{\Theta_1} \left(\frac{\gamma_{SU_1}^{(x_1,x_1)}}{\gamma_{SU_1}^{(x_1,x_1)}}, \frac{\gamma_{SR}^{(x_1,x_1)}}{\gamma_{SU_1}^{(x_1,x_1)}}\right) < \psi_1\right\}
= \Pr\left\{\min_{\Theta_2} \left(\frac{\gamma_{SU_1}^{(x_1,x_1)}}{\gamma_{SU_1}^{(x_1,x_1)}}, \frac{\gamma_{RU_1}^{(x_1,x_1)}}{\gamma_{SU_1}^{(x_1,x_1)}}\right) < \psi_1\right\},
\]

where $\psi_1 = 2^{2R_1} - 1$, $i = (1, 2)$, R_i is target rates of U_i.

Based on (11), Θ_1 can be written as:

\[
\Theta_1 = 1 - \Pr\left(\left|f_{1,m}\right|^2 \geq \Omega\right) = 1 - \sum_{m=1}^{M} C_m^M (-1)^{m-1} \exp\left(-\frac{m\Omega}{\eta_1}\right), \tag{12}
\]

where $\Omega = \max\left(\frac{N_0 b_1}{P_1 b_1}, \frac{N_0 \psi_1}{P_1 b_1}\right)$.

Based on (11), Θ_2 can be expressed as:

\[
\Theta_2 = 1 - \Pr\left(\gamma_{SU_1}^{(x_1,x_1)} \geq \psi_1\right) \Pr\left(\min_{\Theta_2} \left(\frac{\gamma_{SU_1}^{(x_1,x_1)}}{\gamma_{SU_1}^{(x_1,x_1)}}, \frac{\gamma_{RU_1}^{(x_1,x_1)}}{\gamma_{SU_1}^{(x_1,x_1)}}\right) \geq \psi_1\right)
= 1 - \Pr\left(\left|f_{2,m}\right|^2 \geq \frac{N_0 \psi_1}{(1-\theta) P_1 b_1}\right) \Pr\left(\left|f_{3}\right|^2 \geq \frac{\Omega}{\gamma_{RU_1}^{(x_1,x_1)}}\right)
= \sum_{m=1}^{M} \sum_{r=1}^{M} C_m^M C_r^M (-1)^{r+m-2} \exp\left(-\frac{m N_0 \psi_1}{(1-\theta) P_1 b_1}\right) \int_{0}^{\frac{\psi_1}{\gamma_{RU_1}^{(x_1,x_1)}}} \int_{0}^{\frac{\Omega}{\psi_1}} \exp\left(-\frac{4\Omega}{\theta_2 \psi_1}\right) dx \tag{13}
\]

where the last expression is derived from the fact that $\int_{0}^{\infty} e^{-\frac{\pi r^2}{\theta_2 \psi_1}} dy = \sqrt{\frac{\pi}{\theta_2 \psi_1}} K_1\left(\sqrt{\frac{\pi}{\theta_2 \psi_1}}\right)$,

Finally, from (12) and (13) into (11) the exact OP of U_1 can be written as:

\[
\Phi_1 = \left[1 - \sum_{m=1}^{M} C_m^M (-1)^{m-1} \exp\left(-\frac{m\Omega}{\eta_1}\right)\right] \left[1 - \sum_{m=1}^{M} \sum_{r=1}^{M} C_m^M C_r^M (-1)^{r+m-2}\right]
\times \exp\left(-\frac{m N_0 b_1}{(1-\theta) P_1 b_1}\right) \sqrt{\frac{4\Omega}{\theta_2 \psi_1}} K_1\left(\sqrt{\frac{4\Omega}{\theta_2 \psi_1}}\right). \tag{14}
\]

3.1.2. Outage probability of U_2

In this case, an outage event at U_2 will occur if U_2 and R are unable to correctly detect x_2, according to the NOMA principle. As a result, the OP of U_2 can be written as:

\[
\Phi_2 = 1 - \Pr\left\{\gamma_{SU_1}^{(x_2,x_2)} \geq \psi_2\right\} \Pr\left\{\gamma_{RU_2}^{(x_2,x_2)} \geq \psi_2\right\}, \tag{15}
\]

Similar as (14) after several steps, the exact OP of U_2 can be written as:

\[
\Phi_2 = \left[1 - \sum_{m=1}^{M} C_m^M (-1)^{m-1} \exp\left(-\frac{m\Omega}{\eta_1}\right)\right] \left[1 - \sum_{m=1}^{M} \sum_{r=1}^{M} C_m^M C_r^M (-1)^{r+m-2}\right]
\times \sqrt{\frac{4\Omega b_2 N_0}{(1-\theta) b_2 - \psi_2 (1-\theta) b_1 P_1 b_2}} K_1\left(\sqrt{\frac{4\Omega b_2 N_0}{(1-\theta) b_2 - \psi_2 (1-\theta) b_1 P_1 b_2}}\right). \tag{16}
\]
3.2. Sheme 2: imperfect successive interference cancellation

In our proposed system model, U_1 and R are two devices that will apply SIC technology to decode x_1 signals. Therefore, imperfect SIC will not affect the outage performance at U_2. In other words, the outage performance at U_2 in both perfect and imperfect SIC scheme is the same. For that reason, in this part, we only calculate the OP at U_1 is being as:

$$\Phi_{ip,1} = \Pr \left(\frac{\gamma_{SU_1}}{\psi_1} < \psi_1 \right) \Pr \left(\min \left(\frac{\gamma_{SR}}{\psi_1}, \frac{\gamma_{RU_1}}{\psi_1} \right) < \psi_1 \right).$$

(17)

Base on (17), Λ_1 is given by:

$$\Lambda_1 = 1 - \Pr \left\{ \left| f_{1,m^*} \left| ^2 \geq \psi_1 \left(\frac{P_{1,R_2}}{P_{1,R_1}} \right)^2 + N_0 \right. \right\}$$

$$= 1 - \sum_{m=1}^{M} \sum_{r=1}^{M} C_m^M C_r^M (-1)^{r-m+2} \frac{r \chi \eta_3}{\psi_1 \eta_3} \exp \left(-\frac{m \psi_1 N_0}{P_{1,R_1} \eta_3} \right) \int_0^\infty \exp \left(-\frac{m \psi_1 b_2}{P_{1,R_1} \eta_3} + \frac{r \chi \eta_3}{\psi_1 \eta_3} \right) dx \right. \right.$$

$$= 1 - \sum_{m=1}^{M} \sum_{r=1}^{M} C_m^M C_r^M (-1)^{r-m+2} \frac{r \chi \eta_3}{\psi_1 \eta_3} \exp \left(-\frac{m \psi_1 N_0}{P_{1,R_1} \eta_3} \right) \int_0^\infty \exp \left(-\frac{m \psi_1 b_2}{P_{1,R_1} \eta_3} + \frac{r \chi \eta_3}{\psi_1 \eta_3} \right) dx \right. \right.$$

(18)

Then, Λ_2 can be written by $\Lambda_2 = 1 - \Pr \left(\frac{\gamma_{SR}}{\psi_1} \geq \psi_1 \right) \Pr \left(\frac{\gamma_{RU_1}}{\psi_1} \geq \psi_1 \right)$. Then, Λ_{2a} is calculated is being as:

$$\Lambda_{2a} = \Pr \left\{ \left| f_{2,m^*} \left| ^2 \geq \psi_1 \left(\frac{1-\theta}{1-\beta} \right)^2 + N_0 \right. \right\}$$

$$= \sum_{m=1}^{M} \sum_{r=1}^{M} C_m^M C_r^M (-1)^{r-m+2} \frac{r \chi \eta_3}{\psi_1 \eta_3} \exp \left(-\frac{m \psi_1 N_0}{P_{1,R_1} \eta_3} \right) \int_0^\infty \exp \left(-\frac{m \psi_1 b_2}{P_{1,R_1} \eta_3} + \frac{r \chi \eta_3}{\psi_1 \eta_3} \right) dx \right. \right.$$

$$= \sum_{m=1}^{M} \sum_{r=1}^{M} C_m^M C_r^M (-1)^{r-m+2} \frac{r \chi \eta_3}{\psi_1 \eta_3} \exp \left(-\frac{m \psi_1 N_0}{P_{1,R_1} \eta_3} \right) \int_0^\infty \exp \left(-\frac{m \psi_1 b_2}{P_{1,R_1} \eta_3} + \frac{r \chi \eta_3}{\psi_1 \eta_3} \right) dx \right. \right.$$

(19)

We focus on the high SNR approximation of Λ_{2b} which is given by:

$$\Lambda_{2b} \approx \Pr \left\{ \left| \tilde{f}_{2,1} \right| ^2 \geq \frac{\psi_1 b_2}{b_1} \right\} \approx \frac{1}{\chi \eta_3} \int_0^\infty \exp \left(-\frac{\psi_1 b_2}{b_1 \eta_3} + \frac{1}{\chi \eta_3} \right) dx \approx \frac{b_1}{\psi_1 \eta_3 b_1 + b_1}.$$

(20)

From (18)-(20) into (17), the exact OP of U_1 for imperfect SIC can be written as:

$$\Phi_{ip,1} = \left[1 - \sum_{m=1}^{M} \sum_{r=1}^{M} C_m^M C_r^M (-1)^{r-m+2} \frac{r \chi \eta_3}{\psi_1 \eta_3} \exp \left(-\frac{m \psi_1 N_0}{P_{1,R_1} \eta_3} \right) \int_0^\infty \exp \left(-\frac{m \psi_1 b_2}{P_{1,R_1} \eta_3} + \frac{r \chi \eta_3}{\psi_1 \eta_3} \right) dx \right. \right.$$

$$\times \left[1 - \sum_{m=1}^{M} \sum_{r=1}^{M} C_m^M C_r^M (-1)^{r-m+2} \frac{r \chi \eta_3}{\psi_1 \eta_3} \exp \left(-\frac{m \psi_1 N_0}{P_{1,R_1} \eta_3} \right) \int_0^\infty \exp \left(-\frac{m \psi_1 b_2}{P_{1,R_1} \eta_3} + \frac{r \chi \eta_3}{\psi_1 \eta_3} \right) dx \right. \right.$$

(21)

4. NUMERICAL RESULTS

In this part, simulation results are provided by using Monte Carlo simulation method to demonstrate the performance of the proposed cooperative NOMA systems. In particular, the following set of parameters are used: $b_1 = 0.25, R_1 = R_2 = 0.7$ (bps/Hz), $\theta = \beta = 0.6, \eta_1 = \eta_2 = \eta_3 = \eta_4 = 1, \chi = \chi_1 = \chi_2 = \chi_3 = 0.1, P_1/N_0 = 10$ (dB), $M = 2$. Some simulation parameters are given in the caption and the legend of the figures.

As the observation, Figure 2 and Figure 4 plot the OP for proposed NOMA scheme under two scenerios of perfect SIC and imperfect SIC. Observing the Figure 2 we may conclude that, despite the faulty SIC, the system performance still performs well. User U_1 has superior outage performance than user U_2 over the whole range of transmit SNR at source. More specifically, the system achieves better performance in perfect SIC case and the system performance will get better as the number of antennas increases. Besides, we also found from Figure 4 that the NOMA technique performed better than the conventional OMA technology. Furthermore, when increasing the power splitting coefficient of energy harvesting protocol ,i.e., θ, the system performance
is also better. This proves that our proposed model can improve the performance of existing mobile communication networks.

The outage performance is illustrated in Figure 4 as the goal rates are varied. It can be shown that the greater the target rate, the higher the harvested power and the lower the outage performance. Furthermore, when b_1 increases from 0 to 0.35, the perfect SIC mode outperforms the imperfect mode in terms of outage performance. However, according to the principles of NOMA, increasing b_1 means that b_2 is reduced so the performance of U_2 also decreases. Therefore, in order for system performance to be guaranteed for all cases, we obtain the optimal power distribution coefficient at values around $b_1 = 0.2$. We can easily see from Figure 5 that the perfect SIC case always achieves better performance than the imperfect SIC case for different values of SINR and R_1. In addition, it can also be observed that the system performance is significantly enhanced at small target rates and high SINR.

5. CONCLUSION

In this work, we investigated the impact of energy harvesting on the system performance metric of the NOMA system. Simultaneously, the issue of NOMA’s imperfect SIC was investigated. We focus on outage probability for two users with fixed power allocation factors adopted to make differences among two user. When the relay is able harvest larger amount of harvested energy, the system performance can be improved

Exploiting user grouping and energy harvesting in downlink cellular system (Minh-Sang Van Nguyen)
significantly. Further, we have obtained optimal values of several important parameters that help to greatly improve the system performance. Finally, having more antennas at the source improves the system’s outage performance, and our findings suggest that the proposed model can increase the performance of current OMA networks while also demonstrating the potential of using NOMA in future networks.

ACKNOWLEDGEMENT
Authors are greatly thankful to Van Lang University, Vietnam for providing the budget for this study.

REFERENCES

BIOGRAPHIES OF AUTHORS

Minh-Sang Van Nguyen was born in Bentre, Vietnam. He is currently pursuing the master’s degree in wireless communications. He has worked with the Industrial University of Ho Chi Minh City, Vietnam. His research interests include electronic design, signal processing in wireless communications networks, non-orthogonal multiple access, and physical layer security. He can be contacted at email: nguyenvanminhsang@iuh.edu.vn

Huu-Phuc Dang received the B.S. degree in electrical electronics engineering from the HCMC University of Technology and Education, Vietnam, in 2004, and the M.Eng. degree in automation control from the Ho Chi Minh City University of Transport, Vietnam, 2012. He is currently pursuing the Ph.D. degree with the Ho Chi Minh City University of Technology and Education, Vietnam. He is also working at Tra Vinh University. His research interest includes signal processing in wireless communications networks and automation control. He can be contacted at email: danghuuphuc@tvu.edu.vn

Nhan Duc Nguyen received M.Eng in electronic materials from International Training Institute for Materials Science (ITIMS), Hanoi University of Technology in 1998 and his PhD degree in electrical and computer systems engineering from Monash University, Australia in 2011. He had joined the Faculty of Telecommunications, Post and Telecommunication Institute of Technology in Vietnam as a lecturer since 1999. He served as the Head of Signals and Systems Department at Post and Telecommunication Institute of Technology from 2014 to 2020. He is currently serving as a senior lecturer of Faculty of Engineering cum a Systems Engineering Director of the Innovation Center, Van Lang University. His research interests focus on optical communications, numerical modeling and analysis, signal processing, and sensor data processing in machine learning. He can be contacted at email: nhan.nd@vlu.edu.vn

Exploiting user grouping and energy harvesting in downlink cellular system (Minh-Sang Van Nguyen)