On picture fuzzy ideals on commutative rings

Phakakorn Panpho¹, Pairote Yiarayong²

¹Major of Physics, Faculty of Science and Technology, Pibulsongkram Rajabhat University, Phitsanulok, Thailand
²Department of Mathematics, Faculty of Science and Technology, Pibulsongkram Rajabhat University, Phitsanulok, Thailand

ABSTRACT

In this paper, we focus on combining the theories of picture fuzzy sets on rings and establishing a new framework for picture fuzzy sets on commutative rings. The aim of this manuscript is to apply picture fuzzy set for dealing with several kinds of theories in commutative rings. Moreover, we introduce the notions of picture fuzzy ideals on commutative rings and some properties of them are obtained. Finally, we give suitable definitions of the operations of picture fuzzy ideals over a commutative ring, as composition, product and intersection.

Keywords:
Fuzzy set
Picture fuzzy set
Picture fuzzy ideal
Ring
Operation

This is an open access article under the CC BY-SA license.

Corresponding Author:
Pairote Yiarayong
Department of Mathematics, Faculty of Science and Technology, Pibulsongkram Rajabhat University
Phitsanulok, Thailand
Email: pairote0027@hotmail.com

1. INTRODUCTION

Now in this paper we introduced and study picture fuzzy sets as generalization of a commutative ring as well as fuzzy sets. We introduce the notions of picture fuzzy ideals on commutative rings and some properties of them are obtained. Finally, we give suitable definitions of the operations of picture fuzzy ideals over a commutative ring, as composition, product and intersection.

2. PICTURE FUZZY IDEALS

In this section, we concentrate our study on the picture fuzzy ideals and investigate their fundamental properties.
Let \(A = (\mu_A, \eta_A, \nu_A) \) and \(B = (\mu_B, \eta_B, \nu_B) \) be any picture fuzzy sets over a commutative ring \(R \). Then \(A \) is called a \textit{subset} of \(B \) denoted by \(A \subseteq B \) if \(\mu_A \subseteq \mu_B, \eta_A \geq \eta_B \) and \(\nu_A \geq \nu_B \).

Definition 2.1 Let \(A = (\mu_A, \eta_A, \nu_A) \) and \(B = (\mu_B, \eta_B, \nu_B) \) be any picture fuzzy sets over a commutative ring \(R \).

1. The \textit{intersection} of two picture fuzzy sets \(A \) and \(B \) is defined as the picture fuzzy set \(A \cap B = (\mu_A \land \mu_B, \eta_A \lor \eta_B, \nu_A \lor \nu_B) \).
2. The \textit{union} of two picture fuzzy sets \(A \) and \(B \) is defined as the picture fuzzy set \(A \cup B = (\mu_A \lor \mu_B, \eta_A \land \eta_B, \nu_A \land \nu_B) \).

We now consider another generalized fuzzy ideal which is called a picture fuzzy ideal of a commutative ring \(R \).

Definition 2.2 A picture fuzzy set \(A = (\mu_A, \eta_A, \nu_A) \) of a commutative ring \(R \) is called a \textit{picture fuzzy ideal} of \(R \) if
1. \(A(xy) \supseteq A(x) \lor A(y) \) for all \(x, y \in R \),
2. \(A(x−y) \supseteq A(x) \cap A(y) \) for all \(x, y \in R \).

Remark 2.3 Condition (2) of the above definition is equivalent to \(A(x + y) \supseteq A(x) \cap A(y) \) and \(A(−x) = A(x) \) for all \(x, y \in R \).

We now present the following example satisfying above definition.

Example 2.4 Let \(R = \mathbb{Z}_m \). Define the picture fuzzy set \(A = (\mu_A, \eta_A, \nu_A) \) as follows:

<table>
<thead>
<tr>
<th>(\mu_A)</th>
<th>(\eta_A)</th>
<th>(\nu_A)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0.8</td>
<td>0.1</td>
</tr>
<tr>
<td>1</td>
<td>0.2</td>
<td>0.4</td>
</tr>
<tr>
<td>2</td>
<td>0.3</td>
<td>0.2</td>
</tr>
<tr>
<td>3</td>
<td>0.2</td>
<td>0.4</td>
</tr>
<tr>
<td>4</td>
<td>0.3</td>
<td>0.2</td>
</tr>
<tr>
<td>5</td>
<td>0.2</td>
<td>0.4</td>
</tr>
</tbody>
</table>

Then, clearly \(A = (\mu_A, \eta_A, \nu_A) \) is a picture fuzzy ideal over a commutative ring \(R \).

Let \(A = (\mu_A, \eta_A, \nu_A) \) and \(B = (\mu_B, \eta_B, \nu_B) \) be any picture fuzzy sets over a commutative ring \(R \). Define \(A\Theta B = (\mu_A \oplus \mu_B, \eta_A \otimes \eta_B, \nu_A \otimes \nu_B) \) by

\[
(\mu_A \oplus \mu_B)(x) = \left\{ \begin{array}{ll}
\mu_A(y) \land \mu_B(z) & ; \exists y, z \in S, \text{such that } x = y + z \\
0 & ; \text{otherwise,}
\end{array} \right.
\]

\[
(\eta_A \otimes \eta_B)(x) = \left\{ \begin{array}{ll}
\eta_A(y) \lor \eta_B(z) & ; \exists y, z \in S, \text{such that } x = y + z \\
1 & ; \text{otherwise,}
\end{array} \right.
\]

and

\[
(\nu_A \otimes \nu_B)(x) = \left\{ \begin{array}{ll}
\eta_A(y) \lor \eta_B(z) & ; \exists y, z \in S, \text{such that } x = y + z \\
1 & ; \text{otherwise.}
\end{array} \right.
\]

Theorem 2.5 Let \(A = (\mu_A, \eta_A, \nu_A), B = (\mu_B, \eta_B, \nu_B) \) and \(C = (\mu_C, \eta_C, \nu_C) \) be any picture fuzzy ideals over a commutative ring \(R \). Then the following properties hold.
1. \(A(x) \leq A(0) \) for all \(x \in R \).
2. \(A\Theta A = A \).
3. \(A\Theta B = B\Theta A \).
4. \((A\Theta B)\Theta C = A\Theta (B\Theta C) \).
5. \(A\Theta 0 = A \) where \(0 = (0^+, 0^−, 0^0) \) is a picture fuzzy set over \(R \), defined by,

\[
0(x) = \begin{cases}
(1,0,0); & x = 0 \\
(0,0,1); & x \neq 0.
\end{cases}
\]

6. If \(A \subseteq B \), then \(A\Theta C \subseteq B\Theta C \).

Bulletin of Electr Eng & Inf, Vol. 11, No. 5, October 2022: 2783-2788
Proof. 1. Let x be an element of R. Then we have $\mu_A(x) = \mu_A(x - x) \geq \mu_A(x) \land \mu_A(x) = \mu_A(x)$ and $\eta_A(x) = \eta_A(x) \land \eta_A(x) \leq \eta_A(x)$. Similarly, we check that $v_A(0) \leq v_A(x)$. Therefore $A = A(0)$ for all $x \in R$.

2. Let a be an element of R. By (1), we have $(\mu_A \oplus \mu_A)(a) = \bigcup_{a=x+y} \mu_A(x) \land \mu_A(y) \geq \mu_A(a) \land \mu_A(0) = \mu_A(a)$ and $(\eta_A \otimes \eta_A)(a) = \bigcap_{a=x+y} \eta_A(x) \land \eta_A(x) \leq \eta_A(a)$. Similarly, we check that $(\nu_A \otimes \nu_A)(a) \leq \nu_A(a)$. Therefore $A \subseteq A\theta A$. On the other hand, let a be an element of R. Then $(\mu_A \oplus \mu_A)(a) = \bigcup_{a=x+y} \mu_A(x) \land \mu_A(y) = \bigcup_{a=x+y} \mu_A(x) \land \mu_A(y)$ and $(\eta_A \otimes \eta_A)(a) = \bigcap_{a=x+y} \eta_A(x) \land \eta_A(x) = \bigcap_{a=x+y} \eta_A(x) \land \eta_A(x) \leq \bigcap_{a=x+y} \eta_A(x+y) = \eta_A(a)$. It can be similarly proved that $(\nu_A \otimes \nu_A)(a) \leq \nu_A(a)$. Therefore $A\theta 0 = A$.

3. OPERATIONS ON PICTURE FUZZY IDEALS

In this section, we give suitable definitions of the operations of picture fuzzy ideals over a commutative ring R, as composition, product and intersection. Moreover, we obtain basic properties of such picture fuzzy ideals.

Let $A = (\mu_A, \eta_A, v_A)$ and $B = (\mu_B, \eta_B, v_B)$ be any picture fuzzy sets over a ring R. Define the composition $A \odot B = (\mu_A \circ \mu_B, \eta_A \circ \eta_B, v_A \circ v_B)$ and product $AB = (\mu_A \ast \mu_B, \eta_A \ast \eta_B, v_A \ast v_B)$, respectively as follows:

$$(\mu_A \circ \mu_B)(x) = \bigcup_{y \in S, such \ that \ x = yz} \mu_A(y) \land \mu_B(z) ; \forall y, z \in S$$

$$(\eta_A \circ \eta_B)(x) = \bigcap_{y \in S, such \ that \ x = yz} \eta_A(y) \lor \eta_B(z) ; \forall y, z \in S$$

$$(v_A \circ v_B)(x) = \bigvee_{y \in S, such \ that \ x = yz} v_A(y) \lor v_B(z) ; \forall y, z \in S$$

and

$$(\mu_A \ast \mu_B)(x) = \bigcup_{x = \sum_{i=1}^{n} y_i z_i} \left(\bigcap_{i=1}^{n} \mu_A(y_i) \land \bigcap_{i=1}^{n} \mu_B(z_i) \right) ; \forall y_i, z_i \in S, such \ that \ x = \sum_{i=1}^{n} y_i z_i$$

$$(\eta_A \ast \eta_B)(x) = \bigcap_{x = \sum_{i=1}^{n} y_i z_i} \left(\bigcup_{i=1}^{n} \eta_A(y_i) \lor \bigcup_{i=1}^{n} \eta_B(z_i) \right) ; \forall y_i, z_i \in S, such \ that \ x = \sum_{i=1}^{n} y_i z_i$$

$$(v_A \ast v_B)(x) = \bigvee_{x = \sum_{i=1}^{n} y_i z_i} \left(\bigcup_{i=1}^{n} v_A(y_i) \lor \bigcup_{i=1}^{n} v_B(z_i) \right) ; \forall y_i, z_i \in S, such \ that \ x = \sum_{i=1}^{n} y_i z_i$$

On picture fuzzy ideals on commutative rings (Phakakorn Panpho)
Theorem 3.1 Let $A = (\mu_A, \eta_A, \nu_A), B = (\mu_B, \eta_B, \nu_B)$ and $C = (\mu_C, \eta_C, \nu_C)$ be any picture fuzzy ideals over a commutative ring R. Then the following properties hold.

1. If $A \subseteq B$, then $C \cap A \subseteq C \cap B$.
2. If $A \subseteq B$, then $CA \subseteq CB$.
3. $C \cap (A \otimes B) \subseteq (C \cap A) \otimes (C \cap B)$.
4. $C(A \otimes B) \subseteq (C \otimes A) \otimes (C \otimes B)$.
5. $C \cap A \subseteq B$ if and only if $CA \subseteq B$.
6. $B \cap A \subseteq A$.
7. If R is a ring with identity, then $R \otimes A = A$.

Proof. 1. Let x be an element of R. Then $(\mu_c \circ \mu_A)(x) = \bigcup_{x=ab} \mu_c(a) \wedge \mu_A(b) \leq \bigcup_{x=ab} \mu_c(a) \wedge \mu_B(b) = (\mu_c \circ \mu_B)(x)$ and $(\eta_c \bullet \eta_A)(x) = \bigcap_{x=ab} \eta(c) \vee \eta_A(b) \leq \bigcap_{x=ab} \eta(c) \vee \eta_B(b) = (\eta_c \bullet \eta_B)(x).

Similarly, we can see that $(\nu_c \bullet \nu_A)(x) \leq (\nu_c \bullet \nu_B)(x)$. Therefore $C \cap A \subseteq C \cap B$.

2. The proof is easy.

3. Let x be an element of R. Then we have

\[
(\mu_c \circ (\mu_A \oplus \mu_B))(x) = \bigcup_{x=ab} \mu_c(a) \wedge (\mu_A \vee \mu_B)(b)
= \bigcup_{x=ab} \mu_c(a) \wedge \bigcup_{y=z} \mu_A(y) \wedge \mu_B(z)
\]

and

\[
(\eta_c \bullet (\eta_A \otimes \eta_B))(x) = \bigcap_{x=ab} \eta(c) \vee (\eta_A \otimes \eta_B)(b)
= \bigcap_{x=ab} \eta(c) \vee \bigcap_{y=z} \eta_A(y) \vee \eta_B(z)
= \bigcap_{x=ab} \eta(c) \vee \eta_A(y) \vee \eta_B(z)
\]

Similarly, we obtain that $(\nu_c \bullet (\nu_A \otimes \nu_B))(x) \geq (\nu_c \bullet (\nu_A \otimes \nu_B))(x)$. Hence we conclude that $C \cap (A \otimes B) \subseteq (C \otimes A) \otimes (C \otimes B)$.

4-5. The proof is easy.

6. Let x be an element of R. Then we have $(\mu_B \circ \mu_A)(x) = \bigcup_{x=ab} \mu_B(a) \wedge \mu_A(b) \leq \bigcup_{x=ab} \mu_A(a) \wedge \mu_B(b) = \mu_A(x)$ and

\[
(\eta_B \bullet \eta_A)(x) = \bigcap_{x=ab} \eta_B(a) \vee \eta_A(b) \geq \bigcap_{x=ab} \eta_A(a) \vee \eta_B(b) = \eta_A(x).
\]

Similarly we can show that $(\nu_B \bullet \nu_A)(x) \geq (\nu_A)(x)$. Therefore $B \cap A \subseteq A$.

7. The proof is easy.

Next, we develop some basic properties of the operations \cap and \otimes.

Theorem 3.2 Let $A = (\mu_A, \eta_A, \nu_A)$ and $B = (\mu_B, \eta_B, \nu_B)$ be any picture fuzzy ideals over a commutative ring R. Then the following properties hold.

1. $A \cap B$ is a picture fuzzy ideal over R.
2. $A \otimes B$ is a picture fuzzy ideal over R.

Proof. 1. Let x and y be any elements of R. Then we have

\[
(\mu_A \wedge \mu_B)(xy) = \mu_A(xy) \wedge \mu_B(xy)
\]

and

\[
(\eta_A \vee \eta_B)(xy) = \eta_A(xy) \vee \eta_B(xy)
\]

\[
(\mu_A \vee \mu_B)(x - y) = (\mu_A - \mu_B)(x - y)
\]

and

\[
(\eta_A \vee \eta_B)(x - y) = (\eta_A - \eta_B)(x - y)
\]

Similarly, it can be similarly proved that $(\nu_A \vee \nu_B)(xy) \leq (\nu_A \vee \nu_B)(x) \wedge (\nu_A \vee \nu_B)(y)$ and $(\nu_A \vee \nu_B)(x - y) \leq (\nu_A \vee \nu_B)(x) \wedge (\nu_A \vee \nu_B)(y)$. Thus we have $A \cap B$ is a picture fuzzy ideal over R.

Bulletin of Electr Eng & Inf, Vol 11, No. 5, October 2022: 2783-2788
2. Let \(x \) and \(y \) be any elements of \(R \). Then we have
\[
(\mu_A \oplus \mu_B)(x - y) = \bigcup_{x = a_1 + a_2, y = b_1 + b_2} \mu_A(a_1 - b_1) \land \mu_B(a_2 - b_2)
\]
\[
\geq \left(\bigcup_{x = a_1 + a_2, y = b_1 + b_2} \mu_A(a_1) \land \mu_B(a_2) \right) \land \left(\bigcup_{y = b_1 + b_2} \mu_B(b_1) \land \mu_B(b_2) \right)
\]
\[
= (\mu_A \oplus \mu_B)(x) \land (\mu_A \oplus \mu_B)(y)
\]
\[
(\eta_A \otimes \eta_B)(x - y) = \bigcap_{x = a_1 + a_2, y = b_1 + b_2} \eta_A(a_1 - b_1) \lor \eta_B(b_2 - b_2)
\]
\[
\leq (\bigcap_{x = a_1 + a_2, y = b_1 + b_2} \eta_A(a_1) \lor \eta_B(b_2)) \lor (\bigcap_{y = b_1 + b_2} \eta_B(b_1) \lor \eta_B(b_2))
\]
\[
= (\eta_A \otimes \eta_B)(x) \lor (\eta_A \otimes \eta_B)(y)
\]
\[
(\mu_A \oplus \mu_B)(xy) = \bigcup_{x = a_1 + a_2, y = b_1 + b_2} (\mu_A(x) \lor \mu_B(y)) \lor (\mu_A(a_1) \lor \mu_B(a_2))
\]
\[
\leq \bigcup_{x = a_1 + a_2} (\eta_A(a_1) \lor \eta_B(b_2) \lor (\eta_A(a_1) \lor \eta_B(b_2)))
\]
\[
= (\eta_A \otimes \eta_B)(x) \lor (\eta_A \otimes \eta_B)(y)
\]
Similarly we can see that \((v_A \otimes v_B)(x - y) \leq (v_A \otimes v_B)(x) \lor (v_A \otimes v_B)(y)\) and \((v_A \otimes v_B)(xy) \leq (v_A \otimes v_B)(x) \lor (v_A \otimes v_B)(y)\). Thus we have, \(A \Theta B\) is a picture fuzzy ideal over \(R\).

4. CONCLUSION

In the structural theory of picture fuzzy algebraic systems, picture fuzzy sets with special properties always play an important role. In this work, we focus on a particular topic related to picture fuzzy algebra, which develops picture fuzzy versions of commutative rings. Specifically, we study the theory of fuzzy sets and picture fuzzy sets. We introduce the notions of picture fuzzy ideals on commutative rings and some properties of them are obtained. Finally, we give suitable definitions of the operations of picture fuzzy ideals over a commutative ring, as composition, product and intersection.

ACKNOWLEDGEMENTS

This work (Grant No. RGNS 64-189) was financially supported by Office of the Permanent Secretary, Ministry of Higher Education, Science, Research and Innovation.

REFERENCES

BIographies of Authors

Phakakorn Panpho (✉️) is a professor in the Department of Mathematics, Faculty of Science and Technology, Pibulsongkram Rajabhat University. She graduated from Naresuan University, Thailand in physics and then achieved a M.Sc and Ph.D in Biomedical Engineering from University of Liverpool in 2016 and 2021, respectively. She is currently serving as senior lecturer at Program of Physics, Faculty of Science and Technology, Pibulsongkram Rajabhat University. Her research interests bioengineering and biomaterial. She can be contacted at email: phakakorn.p@psru.ac.th.

Pairote Yiarayong (✉️) is an assistant professor of Department of Mathematics, Faculty of Science and Technology, Pibulsongkram Rajabhat University, Phitsanuloke, Thailand. One of his research orientations deals with Abstract Algebra, Semigroup, LA-semigroup, LA-ring, and fuzzy set. He can be contacted at email: pairote0027@hotmail.com and pairote.y@psru.ac.th.