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 This paper presents the application of two swarm intelligence techniques, 

multi-objective artificial bee colony (MOABC) and multi-objective particle 

swarm optimization (MOPSO), to the optimal design of a complementary 

metal oxide semiconductor (CMOS) low noise amplifier (LNA) cascode 

with inductive source degeneration. The aim is to achieve a balanced trade 

off between voltage gain and noise figure. The optimized LNA circuit 

operates at 2.4 GHz with a 1.8 V power supply and is implemented in a 180 

nm CMOS process. Both optimization algorithms were implemented in 

MATLAB and evaluated using the ZDT1, ZDT2, and ZDT3 test functions. 

The optimized designs were then simulated using the advance design system 

(ADS) simulator. The results showed that the MOABC and MOPSO 

techniques are practical and effective in optimizing LNA design, resulting in 

better performance than previously published works, with a gain of 21.2 dB 

and a noise figure of 0.848 dB. 
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1. INTRODUCTION 

Almost all wireless communication applications use radio-frequency (RF) integrated circuits (ICs), 

such as low noise amplifiers (LNAs), in the RF receiver front end to amplify weak signals from receiving 

antenna to an appropriate level with lower noise. The two important factors that must be addressed when 

designing LNA are the noise figure and voltage gain [1]. Synthesizing low-noise amplifiers adequately 

requires many trade-offs between various performance objectives, including voltage gain, noise figure, power 

consumption, and others [2]. Generally, the main goal of LNA design is to simultaneously achieve two 

conflicting objectives: low noise figure and high voltage gain at given amount of power dissipation to meet 

the specification requirements. 

Traditional analog design techniques are challenging when optimizing analog circuit characteristics, 

often requiring many redesign iterations and significant processing time, especially in complex designs where 

traditional methods may not provide optimal solutions. To overcome these challenges, designers have started 

using optimization algorithms such as simulated annealing (SA) [3], genetic algorithm (GA) [4]–[7], particle 

swarm optimization (PSO) [8]–[11], ant colony optimization (ACO) [12]–[17], and artificial bee colony 

algorithm (ABC) [18]–[21], to improve the design process and achieve desired performance in a reasonable time. 

However, analog circuit problems usually involve trade-offs between multiple performance characteristics, such 

as low noise figure and power consumption, stability and phase margin, or power consumption and resolution. 

Designers must balance these conflicting characteristics to achieve desired performance. For example, in 
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bandpass filter design, there is a trade-off between selectivity and insertion loss. Similarly, oscillator design 

requires balancing frequency stability and power consumption. In amplifier design, power output must be traded 

off against distortion, while in ADC design, power consumption must be balanced with resolution. 

The above-mentioned techniques have demonstrated their ability to search for optimal parameter, in 

many applications, including analog design, they can only address a single objective at a time, limiting their 

effectiveness. To address this limitation, multi-objective optimization algorithms have been developed to 

provide optimal solutions to design challenges involving multiple conflicting performance characteristics in 

analog circuits. These algorithms have become an increasingly popular solution to the challenges of analog 

circuit design [22], [23]. In this work, we describe and apply two of the most used swarm intelligence 

techniques: the multi-objective particle swarm optimization (MOPSO) and multi-objective artificial bee colony 

(MOABC) algorithms. We adapt and validate these algorithms through a benchmark of test functions before 

using them to optimize the voltage gain and noise figure of the RF complementary metal oxide semiconductor 

(CMOS) low-noise amplifier with inductive source degeneration as a multiobjective optimization problem. 

The paper is structured as follows: section 2 provides an overview of the proposed MOABC and 

MOPSO algorithms. Section 3 discusses the performance validation of the optimization techniques using a 

benchmark test function. Section 4 describes the low-noise amplifier design. In section 5, we present the 

optimization results obtained using MATLAB software and the simulation results obtained using the advance 

design system (ADS) simulator. Finally, we conclude the paper. 

 

 

2. AN OVERVIEW OF SWARM INTELLIGENCE TECHNIQUES 

This section describes two of the most well-known and commonly used swarm intelligence 

techniques in the literature that belong to the family of metaheuristics inspired by nature. We will discuss the 

ABC and PSO algorithms, which will be presented in their multi-objective form. 

 

2.1.  Multi-objective artificial bee colony algorithm 

Although it is a recent technique, the ABC algorithm is increasingly being used thanks to its 

innovative approach based on the population that has performed well when dealing with various optimization 

challenges [24]. The ABC algorithm simulates the foraging behavior of a bee swarm, where food sources 

correspond to potential solutions for an optimization problem. The nectar quantity of a food source indicates 

its quality as a solution. The ABC comprises employed, onlooker and scout bees. The ABC algorithm 

follows the main steps outlined: 

a. Initialization phase 

The scout bees randomly initialize the food source position and generate external archives by 

inserting the first non-dominated solutions. 

b. Employed bee phase 

Each employed bee locates a new source of nectar (soli
∗
) in the vicinity of the current position of its 

food source ( foodi). Therefore, by comparing the old and new solutions, the best one is chosen and saved in 

the archive using a greedy selection technique. The food source position is updated by the following equation: 

 

𝑠𝑜𝑙𝑖
𝑗∗

= 𝑓𝑜𝑜𝑑𝑖
𝑗

+ 𝑟𝑎𝑛𝑑[−1; 1] ∗ (𝑓𝑜𝑜𝑑𝑖
𝑗

− 𝑓𝑜𝑜𝑑𝑘
𝑗
) (1) 

 

Where: 

i ≠ k ; i ∈ (1,2, … , N); foodi
k represent the neighbor bee of foodi

j
; j, k is randomly selected; N represents the 

number of employed bees. 

c. Onlooker bee phase 

The ( foodi), is randomly chosen from the archive generated by the employed bee stage, and the 

greedy selection is applied to choose the best food source position. The new food source (soli
∗
) is produced by 

the following equation: 

 

𝑠𝑜𝑙𝑖
𝑟𝑝∗

= 𝑓𝑜𝑜𝑑𝑖
𝑟𝑝

+ 𝑟𝑎𝑛𝑑[−1; 1] ∗ (𝐴𝑅𝑘
𝑟𝑝

− 𝑓𝑜𝑜𝑑𝑖
𝑟𝑝

) (2) 

 

Where: 

k ∈ (1,2, … , m) is choosen randomly; while m, represent the archive size; rp is randomly selected from the 

archive. i ∈ (1,2, … , Food number). 

d. Scout bee phase 

In case the solution cannot be improved after a limited number of tries, a scout bee occurs, and the 

food source position is updated by the following equation: 
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𝑓𝑜𝑜𝑑𝑖
: = 𝑙𝑏 + 𝑟𝑎𝑛𝑑[1; 𝑑] ∗. (𝑢𝑏 − 𝑙𝑏) (3) 

 

2.2.  Multi-objective particle swarm optimization 

Eberhart and Kennedy introduced PSO for the first time in 1995 [25]. It is a method inspired by 

nature, which studied the flocking behavior of birds. A set of particles is referred to as a swarm, and each 

bird is represented as a particle. Each particle in the decision space uses two types of velocities, pbest and 

gbest, where pbest is the particle's best location in history, and gbest is the swarm's best previously evaluated 

location. The PSO method begins by looking for uniformly distributed random solutions. If there are D 

decision variables, each particle can be represented by a D-dimensional vector, and the velocity (𝑉𝑖) and 

current position (𝑋𝑖) of the ith particle are represented as [26]: 

 

Xi = {xi1, xi2, … , xiD} (4) 
 

Vi = {vi2, … , viD} (5) 
 

The following information is used by each particle to attempt to change its position: i) current position,  

ii) distance between pbest and the current position, iii) distance between gbest and the current position, and 

iv) current velocities. The flowcharts of the proposed algorithms MOABC and MOPSO, are respectively 

described by the following Figures 1 and 2: 

 

 

 
 

Figure 1. Flowchart of the MOABC algorithm 
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Figure 2. Flowchart of the MOPSO algorithm 
 
 

The movement of the particle is controlled by updating its position and velocity of the ith particle 

according to the following expression: 
 

Vid
n+1 = α(ω. vid

n + c1. r1
n(pbestid

n − Xid
n ) + c2. r2

n(gbestid
n − Xid

n )) (6) 

 

With, i=1, 2, …, N and d=1, 2, …, D 
 

𝑋𝑖
𝑡+1 = 𝑋𝑖

𝑡 + 𝑉𝑖
𝑡+1 (7) 

 

Where: 

r1, r2 : random values between 0 and 1 

𝑐2 : social acceleration coefficient 

ω : intertia weight 

𝑐1 : cognitive acceleration coefficient 

gbest : global best of the particle 

pbest : personal best of the particle 

ABC and PSO were adapted to be able to deal with multi-objective optimization problems (MO). 

Indeed, the goal of the MO approach is to generate a collection of solutions that are not dominated, which are 

referred to as Pareto optimal solutions for the problem [27]. The figures show the flowcharts of the proposed 

MOABC and MOPSO algorithms. 

 

 

3. VALIDATION OF METAHEURISTICS PERFORMANCE BY TEST FUNCTIONS 

To evaluate the performance of the two used algorithms, we chose a multi-objective benchmark 

consisting of three test functions known in the literature: Zitzler–Deb–Thiele's ZDT1, ZDT2, and ZDT3 [28]. 

The tests were performed using the MOABC and MOPSO control parameters listed in Tables 1 and 2.  

Figures 3(a)-(c) shows the pareto fronts of the benchmark test functions generated by the MOABC and 

MOPSO algorithms. It is clearly seen that the pareto fronts generated by the two proposed algorithms exactly 

match the true pareto fronts. As a comparison, the MOABC algorithm provides superior performance in 

terms of optimal quality compared to MOPSO. In fact, the MOABC shows a better distribution of solutions 

along the front with good regularity. These results show that the proposed optimization techniques can be 

applied to optimization problems with a guarantee of optimal convergence. In the following, the MOABC 

and MOPSO algorithms will be applied to the problem of optimal sizing of the LNA. 
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Table 1. Control parameters of MOABC algorithm 
MOABC settings 

Max iteration 100 
Limit 100 

Dimension of the solution space (D) 4 

Size of the external archive (SAR) 25 
Number of colony size (NCS) 100 

Number of onlookers bees (%) 50 

Number of employed bees (%) 50 
Number of scouts (1) 1 

 

 

Table 2. Control parameters of MOPSO algorithm 
MOPSO settings 

Dimension of the solution space (D) 4 

Max iteration 100 

Number of particles (NP) 100 

Size of the external archive (SAR) 25 

Weight damping rate (Wdamp) 0.99 

Weight factor (w) 0.5 
Acceleration coefficient 1 

Acceleration coefficient 2 

Number of grids per dimension (NGrid) 7 

Inflation rate (𝛼) 0.1 

Leader selection pressure (𝛽) 2 

Deletion selection pressure (𝛾) 2 

Mutation rate (𝜇) 0.1 

 

 

  
(a) (b) 

  

 
(c) 

 

Figure 3. Pareto front of multi-objective test functions Pareto front of (a) ZDT1, (b) ZDT2, and (c) ZDT3 

 

 

4. APPLICATION EXAMPLE: LOW NOISE AMPLIFIER DESIGN 

4.1.   Low noise amplifier circuit topology and analysis 

The cascode topology with inductive source degeneration is the most widely used low-noise 

amplifier because it can simultaneously satisfy requirements for voltage gain and noise figure [29].  

Figure 4(a) depicts the CMOS source inductive degeneration LNA topology, which uses inductive source 
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degeneracy to represent an inductor (Ld) connected to the source of the M1 transistor. The cascading (M2) 

transistor minimizes the effect between the tuned output and input. The biasing circuit is implemented using 

an M3 transistor connected as a diode. Figure 4(b) illustrates the small-signal circuit of an LNA cascode 

amplifier, which is used for analyzing noise, including an intrinsic transistor noise model. The input matching 

network, represented by an inductor (Ls), determines the input impedance of the LNA. To maximize the 

output power transfer, the output inductor Ld is used to resonate with the output load [30]. 
 
 

 
(a) 

 

 
(b) 

 

Figure 4. CMOS LNA Schematic and Small Signal Equivalent Circuit (a) CMOS LNA schematic and (b) 

LNA small signal equivalent circuit 

 

 

4.1.1. Noise figure of the used low noise amplifier circuit 

The definition of noise factor is defined by the following equation: 
 

F =
Total output noise power

Output noise due to the input source
 (8) 

 

In order to determine the expression for noise figure, it is necessary to apply thermal noise theory 

analysis to identify four distinct noise sources. Subsequently, the impact of these four sources on the output 

noise power must be determined using small signal analysis. The impact of the common-gate transistor on 

noise and frequency response is disregarded, along with the parasitic resistances of its D, S, G, and B 

terminals [31], [32]. In this noise analysis, four sources of noise have been considered: i) the thermal noise of 

the source resistance (𝑖𝑛̅,𝑅𝑠); ii) the thermal noise of the output resistance (𝑖𝑛̅,𝑅𝑜𝑢𝑡); iii) the gate noise (𝑖𝑛̅,𝑔); 

iv) the channel thermal noise (𝑖𝑛̅,𝑑). 

The impact of the cascode 𝑀2 transistor on the noise is insignificant when compared to the main 𝑀1 

transistor. Furthermore, the noise from the MOSFET's source and bulk resistance is considered minimal and 

not taken into account for this analysis, as stated in references [33], [34]. The analysis focuses on the four 

primary noise sources that affect the output, namely 𝑖𝑜̅,𝑅𝑠, 𝑖𝑜̅,𝑑, 𝑖𝑜̅,𝑔, 𝑖𝑜̅,𝑅𝑜𝑢𝑡 respectively [35]. The noise 

sources expressions are summarized in Table 3. 
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Table 3. Noise sources and output referred expressions 
Noise source Expression Output referred expression 

𝑅𝑠 𝑖2̅
𝑛,𝑅𝑠 = 4𝑘𝑇 1

𝑅𝑠
⁄ ∆𝑓 𝑖𝑛̅,o,𝑅𝑠 =

𝑔𝑚
(𝑗2𝜔0𝐶𝑡𝑜𝑡)⁄ 𝑖𝑛̅,𝑅𝑠 

𝑖𝑛̅,𝑑 𝑖2̅
𝑛,𝑑 = 4𝑘𝑇𝛾𝑔𝑑0∆𝑓 𝑖𝑛̅,o,𝑑 = − 1

2⁄ 𝑖𝑛̅,𝑑 

𝑖𝑛̅,𝑔 𝑖2̅
𝑛,𝑔 = 4𝑘𝑇𝛽𝑔𝑔∆𝑓 𝑖𝑛̅,o,𝑔 =

𝑔𝑚
(𝑗𝜔0𝐶𝑡𝑜𝑡)⁄

(1 − 𝑗𝑅𝑠𝜔0𝐶𝑡𝑜𝑡)
𝑗2𝑅𝑠𝜔0𝐶𝑡𝑜𝑡

⁄ 𝑖𝑛̅,𝑔 

𝑅𝑜𝑢𝑡 𝑖2̅
𝑛,𝑅𝑜𝑢𝑡 = 4𝑘𝑇 1

𝑅𝑜𝑢𝑡
⁄ ∆𝑓 𝑖𝑛̅,o,𝑅𝑠 = 𝑖𝑛̅,𝑅𝑜𝑢𝑡 

Correlation btw in̅,d and in̅,g **** 
𝑖2̅

𝑛,𝑜,𝑐𝑜𝑟𝑟 =
𝑔𝑚

(2𝜔0𝐶𝑡𝑜𝑡)⁄ √𝑖2̅
𝑛,𝑔. 𝑖2̅

𝑛,𝑑 

 

 

As a result, the LNA noise factor is expressed as (9): 
 

𝐹 =
𝑖2̅

𝑛,𝑜,𝑅𝑠+𝑖2̅
𝑛,𝑜,𝑑+𝑖2̅

𝑛,𝑜,𝑔+𝑖2̅
𝑛,𝑜,𝑐𝑜𝑟𝑟+𝑖2̅

𝑛,𝑜,𝑅𝑜𝑢𝑡

𝑖2̅
𝑛,𝑜,𝑅𝑠

 (9) 

 

Using the equations listed in Table 3, the noise factor at the resonance is obtaind as (10): 
 

𝐹 = 1 +
𝐴+𝐵+𝐶+𝐷

𝐸
 (10) 

 

Where, 
 

𝐴 = (1
4⁄ ) ∗ 𝛾 ∗ 𝑔𝑑0 (11) 

 

𝐵 = 𝑔𝑚
2 ∗ (

𝐶𝑔𝑠
𝐶𝑡𝑜𝑡

⁄ )
2

∗ (𝑄2 + 1
4⁄ ) ∗

𝛽
(5 ∗ 𝑔𝑑0)⁄  (12) 

 

𝐶 = 𝑔𝑚 ∗ 𝑐 ∗ (
𝐶𝑔𝑠

𝐶𝑡𝑜𝑡
⁄ ) ∗ √(𝛾 ∗ 𝛽)

20
⁄  (13) 

 

𝐷 = 1
𝑅𝐿

⁄  (14) 

 

𝐸 = 𝑔𝑚
2 ∗ 𝑅𝑠 ∗ 𝑄2 (15) 

 

With, the white noise factor, intrinsic gate capacitance, correlation coefficient, gate noise parameter, and the 

sum of Cgs, Cd, and parasitic capacitance are represented by, γ, Cgs, c, β, and Ctot, respectively. 

The following equations provide the input quality factor Q at the resonance frequency 𝜔0: 
 

𝑄 =
1

𝑅𝑡𝑜𝑡𝜔0𝐶𝑡𝑜𝑡
 (16) 

 

Where, 

 

𝜔0 =
1

√𝐿𝑡𝑜𝑡𝐶𝑡𝑜𝑡
 and 𝑅𝑠 =

𝑔𝑚𝐿𝑠

𝐶𝑡𝑜𝑡
 (17) 

 

The gm and gd0 are approximated by the following expression [36]. 
 

𝑔𝑚 = 𝐴0 ∗ 𝐿𝐴1 ∗ 𝑊𝐴2 ∗ 𝐼𝑑
𝐴3  (18) 

 

𝑔𝑑0 = 𝐵0 ∗ 𝐿𝐵1 ∗ 𝑊𝐵2 ∗ 𝐼𝑑
𝐵3 (19) 

 

The length, width, and drain current of MOSFET transistors are represented by L, W, and Id, 

respectively. A0=0.0423, A1=-0.4578, A2=0.5275, A3=0.4725, B0=0.0091, B1=-0.5637, B2=0.5305, 

B3=0.4695, 𝛾=1.05 and 𝛽=3.8 are constants. Finally, the noise figure expression is given as follows: 
 

𝑁𝐹 = 10𝑙𝑜𝑔10(𝐹) (20) 

 

4.1.2. Voltage gain of the low noise amplifier 

The first stage provides the input impedance Zin of this architecture at the resonance, Figure 4(b): 
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𝑍𝐼𝑁 = 𝑗𝜔(𝐿𝑔 + 𝐿𝑠) +
1

𝑗𝜔𝐶𝑔𝑠
+

𝑔𝑚𝐿𝑠

𝐶𝑔𝑠
 (21) 

 

Where the input resistance is given by: 
 

𝑅𝑖𝑛 = 𝑅𝑒[𝑍𝑖𝑛] =
𝑔𝑚

𝐶𝑔𝑠
𝐿𝑠 (22) 

 

And at the resonance frequency, 
 

𝜔2 = (𝐿𝑔 + 𝐿𝑠)𝐶𝑔𝑠 = 1 (23) 
 

The gain of LNA is given by the following equation: 
 

𝐺𝑎𝑖𝑛 =
𝑉𝑜𝑢𝑡

𝑉𝑖𝑛
=

−𝑗𝜔𝑔𝑚𝐿𝑑

1−𝜔2𝐶𝑔𝑠(𝐿𝑔+𝐿𝑠)+𝑗𝜔𝑔𝑚𝐿𝑠
 (24) 

 

Substitute (23) into (24): 
 

𝐺𝑎𝑖𝑛 =
𝑉𝑜𝑢𝑡

𝑉𝑖𝑛
=

−𝑗𝜔𝑔𝑚𝐿𝑑

𝑗𝜔𝑔𝑚𝐿𝑠
=

−𝐿𝑑

𝐿𝑠
 (25) 

 

Where, the gate input inductor, the inductor source degeneration, the operating frequency, the 

transconductance, the source resistance and gate-source capacitance of M1 transistor, are represented by Ls, 

Lg, ω0, gm, Rs and Cgs, respectively. 

 

4.2.  Low noise amplifier design method 

The problem of sizing ICs is addressed through multi-objective optimization algorithms and a 

performance evaluator based on analytical equations. The optimization process generates new sets of design 

variables at each iteration, including the width and length of transistors, as well as the sizes of resistors, 

capacitors, inductors, and other components [37]. The design methodology used is described in Figure 5. 

Two objective functions, namely the voltage gain and noise figure of an LNA circuit, are optimized using 

MOABC and MOPSO optimization techniques. The voltage gain should be maximized, and the noise figure 

should be minimized to obtain a good trade-off while respecting the design constraints and target 

specifications [38], as shown in Table 4. 
 

 

 
 

Figure 5. Flow diagram of LNA design method 
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Table 4. LNA specifications design 
Parameters Specification 

Technology CMOS 180 nm 
Power supply (Vdd) 1.8 V 

Bias current (Id) <8 mA 

Power dissipation (Pd) <=15 mw 
Operating frequency (F) 2.4 GHz 

Noise figure (NF) <3 dB 

Voltage gain (S21) >=10 dB 

 

 

5. OPTIMIZATION AND SIMULATION RESULTS AND DISCUSSION 

5.1.   Optimization results using MATLAB 

The MOABC and MOPSO algorithms are applied to simultaneously optimize two objective 

functions of the LNA circuit: the voltage gains and noise figure. Therefore, the main goal is to minimize the 

noise figure (NF) and maximize the voltage gain to achieve a good trade-off. Both algorithms have been 

applied to generate the Pareto front, shown in Figure 6. Table 5 shows three random solutions chosen from 

the archive of results obtained by the MOABC and the MOPSO algorithms. 

  

 

 
 

Figure 6. Pareto front of NF as function of gain and W 

 

 

Table 5. Optimization results 
MOABC algorithm 

Solutions W (um) L (um) I (mA) Gain (dB) NF (dB) 

Sol@1 49.877 0.215 07.780 16.841 0.785 

Sol@2 50.000 0.220 06.137 15.593 0.906 

Sol@3 50.000 0.198 10.000 18.901 0.968 

MOPSO algorithm 
Solutions W (um) L (um) I (mA) Gain (dB) NF (dB) 

Sol@1 48.653 0.214 3.83 14.125 0.740 
Sol@3 46.511 0.209 3.95 14.730 0.692 

Sol@4 47.566 0.198 3.17 14.437 0.731 

 

 

5.2.  Simulation results using advance design system 

The ADS simulator is used to simulate the low-noise amplifier circuit to verify the required design 

performances and specifications. The resulting values obtained by the MOABC and MOPSO algorithms are 

applied as the design circuit parameters in the ADS simulator. The simulations are performed using CMOS 

180 nm process with a 1.8 V power supply. Figures 7 and 8 show the LNA test bench and simulation results 

of voltage gain and noise figure as functions of frequency, respectively. 
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Figure 7. LNA test bench circuit 

 

 

  

  
 

Figure 8. Simulation results of NF and gain as function of frequency of 3 solutions (sol@1, sol@2, sol@3) 
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Table 6 provides insights into the relative errors of the voltage gain and noise figure for two 

objective functions. The results suggest that the MOABC algorithm delivered the best trade-off solution 

(Sol@3) with the highest level of consistency between optimization and simulation outcomes. Furthermore, 

the MOABC algorithm's performance surpassed that of the MOPSO algorithm, as evidenced by the lower 

relative error values of 22.22% and 29.91%, respectively. Table 7 shows a comparison of the optimization 

results obtained by the MOABC and the MOPSO techniques and by the other ones reported in the literature 

[39]–[43]. Therefore, we can notice that the obtained LNA design has a low noise figure and a high voltage 

gain, compared to other techniques documented in literature. 

 

 

Table 6. Optimization and simulation results 
MOABC algorithm 

 MATLAB ADS Relative error* 

Solutions Gain (dB) NF (dB) Gain (dB) NF (dB) %ErrGain %ErrNF 
Sol@1 16.841 0.785 14.413 0.913 16.845 14.047 

Sol@2 15.593 0.906 12.758 0.938 22.222 03.374 

Sol@3 18.901 0.968 21.200 0.848 10.846 14.164 
MOPSO algorithm 

 MATLAB ADS Relative error* 

Solutions Gain (dB) NF (dB) Gain (dB) NF (dB) %ErrGain %ErrNF 
Sol@1 14.125 0.740 14.060 0.885 00.462 16.395 

Sol@2 14.730 0.692 18.651 0.832 21.023 16.844 

Sol@3 14.437 0.731 20.599 0.816 29.914 10.447 

*Relative error=100×|Opti. value-Sim. value|/Sim. Value 

 

 

Table 7. Performances comparison 
Parameter [39] [40] [41] [42] [43] This work 

Methods ACO ACO Classic Classic Classic GA MOPSO MOABC 
Power supply (V) 2 2 1 1.8 1.2 1.8 1.8 1.8 

Frequency (GHz) 2.3 2.3 2.4 2.4 2.4 1.5 2.4 2.4 

Voltage gain (dB) 9.432 10.24 18.2 20.10 20 19.722 20.59 21.2 

Noise figure (dB) 0.328 0.310 3.4 3.2 5.6 0.745 0.731 0.816 

 

 

6. CONCLUSION 

In this paper, we have presented an optimization approach for the optimal sizing of an LNA circuit. 

The proposed MOABC and MOPSO algorithms were adapted and successfully applied to maximize the 

voltage gain while minimizing the noise figure of the LNA circuit. The optimized design, implemented in a 

CMOS 180 nm process, operates at 2.4 GHz with a 1.8 V power supply. The proposed circuit design 

achieves a better trade-off between voltage gain and noise figure (Gain=21.200, NF=0.848) while consuming 

less power. The optimized designs were simulated using the ADS simulator to verify the validity of the 

results achieved by the algorithms. The optimization and simulation values were in agreement, showing the 

benefits of the proposed design methodology. The results are very promising for helping the designers reduce 

the number of redesign iterations by only selecting the best design for a specific application. Finally, the 

achieved LNA design shows better performance than other optimization-based methods previously reported 

in the literature. 
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