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 This research work uses machine learning (ML) approaches to classify on-

board diagnostics II (OBD II) data and g-force measures to provide a 

thorough analysis of driving behavior. The research paper effectively 

demonstrates the classification of driving behaviours using OBD II and g-

force data. Driving behaviours are analyzed by using ML algorithms such as 

random forest (RF), AdaBoost, and K-nearest neighbors (KNN). The 

analysis goes beyond a summary by discussing how OBD II data, g-force 

metrics, and the algorithms interrelate to classify ten distinct driving 

behaviors (e.g., weaving, swerving, and sideslipping). The RF classifier 

achieved the highest accuracy, which reinforces the strength of the chosen 

models. The inclusion of comparisons with other techniques supports 

arguments about the model's performance. The related works section 

connects the references to the central topic by highlighting prior approaches 

and research studies related to OBD II and driver behaviour analysis. The 

goals of this study are improving the accuracy of driving behaviour 

classification, with implications for traffic safety, driver education, and 

insurance sectors. 
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1. INTRODUCTION 

The number of vehicles grows annually due to the rapid rising economy and government 

liberalization policy for foreign automakers. The number of non-professional drivers is also rising quickly at 

the same time. The primary causes of traffic accidents are now the individual drivers, as most inexperienced 

drivers lack driving experience, are ignorant of the state of the vehicles, and have low knowledge of traffic 

safety. Therefore, it is utmost important to determine the driving behavior so that the local authority can 

retrieve the vehicle information and analyze and then take proper action. 

On-board diagnostics (OBD) is a standard protocol [1] for vehicles that monitors various aspects of 

vehicle performance and health. It emerged in the mid-1990s as a significant advancement over the original 

OBD I system, which was introduced in the 1980s. OBD II's primary purpose is to check the engine's major 

components and alert the driver and concerned person if there is any malfunction, thus aiding in the 

maintenance and repair of vehicles. OBD II systems consist of a standardized digital communications port, 

known as the data link connector (DLC), which is typically located under the driver side dashboard. This port 

https://creativecommons.org/licenses/by-sa/4.0/
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allows external devices, such as scan tools and diagnostic software, to interface with the vehicle's computer 

system. OBD-II has basically four communication protocols for interfacing the OBD-II port. But the 

preference of protocol is dependent on the vehicle manufacturer. The key work here lies in a comprehensive 

model development that categorizes behavior of driving with high accuracy using OBD II and G-force data. 

The research work introduces a method that contrasts with previous approaches by incorporating multiple 

weak classifiers into a robust classification system via AdaBoost. Additionally, the paper's application of 

random forest (RF) and its comparison with other algorithms like Naive Bayes and logistic regression 

demonstrate new findings in the classification of driving behaviours. 

 

 

2. RELATED WORKS 

Various diagnostic methods including Autel Maxidiag (elite series) and Launch X 431 were used [2] 

to enhance the problems and malfunction identification. Research by Ramai et al. [3] offers the foundation 

for an inexpensive method of online EV monitoring. Two Hyundai Ioniq EV had a Raspberry Pi ZeroW and 

additional parts fitted in order to connect to them via the OBD-II connector. Wen et al. [4] conducted the 

security analysis of wireless OBD-II scanners in this study. They designed and built DONGLESCOPE, an 

automated program that tests these dongles on a real car in real time, covering all possible assault phases. 

Options for monitoring important vehicle performance were described in this study by Yadav and Pathak [5], 

along with a synopsis of the sensors used to retrieve these parameter values. 

Shaikh et al. [6] developed an Android application that monitors driving behavior and notifies the 

user of any discrepancy in driving habits in an effort to avert a catastrophic event. Vaiti et al. [7] research 

proposed a data driven method for cluster emission calculation based on vehicle parameters related to 

emissions. Ameen et al. [8] propose a way to categorize four driving behaviors: dangerous, aggressive, 

secure, and typical behavior, with the goal of reducing the chance of accidents. Three light-duty passenger 

cars (LDPVs) were tested by Zheng et al. [9] utilizing a laboratory dynamometer and the NEDC as a type-

approval cycle. 

The platform presented in this work Peppes et al. [10] combines open-source technology with 

machine and deep learning techniques to collect, store, process, analyze, and correlate data coming from cars. 

The results of a driving behavior literature review are discussed by Hermawan and Husni [11]. This study 

covers methods to collect OBD II data, and analyze, model, and assess it. Gharbins [12] assessed the degree 

of proficiency among technicians in utilizing the OBD II instrument for standard maintenance on 

automobiles containing electronic components, in addition to the degree of diagnostic equipment and 

reference materials available in nearby repair shops. 

Big data analysis requires the use of several languages and technologies, including Hadoop, Python, 

Spark, R, and MATLAB, which are all covered by Meenakshi et al. [13]. The real-world statistics of a mild 

hybrid car might differ depending on a number of factors, such as the vehicle, engine cycle, and powertrain, 

as examined by Barbier et al. [14]. By examining the signals from the electronic control unit's PIDs, 

Campoverde et al. [15] created an algorithm that can identify two typical driving behaviors, such as braking 

to slow down and disengaging to shift gears. Subscription-based car maintenance options were recommended 

by Maalik and Ponnampalam for people who don't have the time for repairs and upkeep [16]. Hamed et al. 

[17] employ machine learning (ML) to improve the fuel consumption forecast accuracy model to decrease 

consumption of fuel. OBD data for vehicle dynamics analysis and forecasting is examined by Navali et al. 

[18]. According to the results, the OBD may provide data for a range of real-time and offline applications. 

Using a transformer neural network (TNN) ML technique, Fernández et al. [19] established a way for 

creating accurate speed correction data from OBD II data. Using OBD, Song and Kim [20] propose a method 

for determining CAN specifications linked to important vehicle metrics. 

Research by Kim and Baek [21] present a method that automatically extracts private in-vehicle data 

by correlating sensor data with the sought information. A portable system to monitor mobile use while 

driving and, if required, take control of a driver's phone whenever the car attains a speed limit (>10 km/h) 

was proposed by Khandakar et al. [22]. A mathematical, graphic, and analytical approach for examining 

customer driving behavior is provided by Navneeth et al. [23]. Through the OBD interface, Kumar and Jain 

[24] suggested method that gathers vital performance data of vehicle, such as RPM, speed, position of 

accelerator paddle, determined motor load, and other characteristics. The suggested approach categories 

driver behavior using ML algorithms including AdaBoost, support vector machine (SVM) and RF. This 

paper’s main goal is on DB analysis methods, and it is rendered in an elaborated manner [25]. 

 

 

3. METHOD 

All the real time OBD data with the attributes like device time, absolute throttle position (ATP) (%), 

accelerator pedal position (APP) (%), air fuel ratio, average trip speed (whilst stopped or moving)(km/h), 
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engine load (%), revolutions per minute, fuel flow (FF) rate (gal/min), intake manifold pressure (psi), fuel 

trim bank (FTB) 1 short term (%), kilometers per litre (long term average) (kpl), City driving (%), idle 

driving (%), run time since engine start (s), speed (OBD II) (km/h), trip average KPL (kpl) were collected. 

The wATP, wAPP, wFFR, wFTB1L, wIMP, wTPM are the normalized weights ATP, APP, FF rate, FTB 1 

long, IMP and TP (manifold) respectively. So, the sum of the weights is given by (1): 

 

Sum = wATP + wAPP + wFFR + wFTB1L + wIMP + wTPM  (1) 

 

where the normalized weights given by (2) to (7): 

 

w′
ATP =

wATP

Sum
  (2) 

 

w′
APP =

wAPP

Sum
  (3) 

 

w′
FFR =

wFFR

Sum
  (4) 

 

w′
FTB1L =

wFTB1L

Sum
 (5) 

 

w′
IMP =

wIMP

Sum
 (6) 

 

w′
TPM =

wTPM

Sum
 (7) 

 

the final model for engine load can be written as (8): 

 

𝐸𝑛𝑔𝑖𝑛𝑒 𝐿𝑜𝑎𝑑 = 𝑤′
𝐴𝑇𝑃 . 𝐴𝑇𝑃 + 𝑤′

𝐴𝑃𝑃 . 𝐴𝑃𝑃 + 𝑤′
𝐹𝐹𝑅 ∗ 𝐹𝐹𝑅 + 

𝑤′
𝐹𝑇𝐵1𝐿 ∗ 𝐹𝑇𝐵1𝐿 + 𝑤′

𝐼𝑀𝑃 ∗ 𝐼𝑀𝑃 + 𝑤′
𝑇𝑃𝑀 ∗ 𝑇𝑃𝑀 (8) 

 

This equation involves fuel usages which contrast with the existing (13). It has been found that fuel 

consumption negatively affects driving scores and is closely tied to driver conduct. In (9) and (10) calculate 

average fuel consumption, which is obtained by averaging all instantaneous fuel consumption measurements: 

 

𝐹𝑢𝑒𝑙 𝐶𝑜𝑛𝑠𝑢𝑚𝑝𝑡𝑖𝑜𝑛(
𝑙𝑖𝑡

𝑘𝑚
) =

Fuel Flow(
lit

hr
)

Speed(
km

hr
)

 (9) 

 

𝐹𝑢𝑒𝑙 𝐹𝑙𝑜𝑤 =
MAF

λ∗AFR∗ρ
 (10) 

 

where λ is the OBD II parameter which denotes air and fuel ratio and has standard value 1, AFR denotes the 

stoichiometric ratio having standard value 14.7, MAF denotes mass air flow rate in gm/sec from MAF 

sensor, ρ is the petrol density which is typically 770 gm/liter. It is measured using (11): 

 

𝐹𝑢𝑒𝑙 𝐶𝑜𝑛𝑠𝑢𝑚𝑝𝑡𝑖𝑜𝑛 =
Speed

Mass Air Flow
 (11) 

 

IDL_ENG indicates that the engine is not running. This suggests that fuel is being wasted, which will 

eventually lower the driving score as indicated (12). 

 

Score = {
−1, 800 ≤ rpm ≤ 1000 and Gear = N and Speed = 0

1, Otherwise
  (12) 

 

Engine load parameter reading at idle is around 20%, while a reading of 100% indicates that the 

engine is under full load. In general, a load parameter reading of 70% to 80% during normal driving mode is 

considered optimal for both performance and fuel efficiency. An engine load >80% or <70% negatively 

affects driving behavior negatively. Engine load as given in terms of air flow in (13): 

 

𝐸𝑛𝑔𝑖𝑛𝑒 𝐿𝑜𝑎𝑑 =
𝐶𝑢𝑟𝑟𝑒𝑛𝑡 𝐴𝑖𝑟 𝐹𝑙𝑜𝑤

𝑀𝑎𝑥 𝐴𝑖𝑟 𝐹𝑙𝑜𝑤(𝑟𝑝𝑚).
Barometric Pressure

29.92
.√

298

Tamb+273

 (13) 
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High speed braking is a type a braking when a vehicle applies brake suddenly as in Figure 1, and 

acceleration on y-axis abruptly decreases and keeps even negative for some time while acceleration on x-axis 

remains flat. Normal acceleration and normal deceleration are in the range of 0.1 m/sec2<normal acceleration 

<2.74 m/sec2 and -0.1 m/sec2<normal deceleration<-2.74 m/sec2 respectively. 

Brakes applied abruptly negatively affects driving-score if a<2.74 m/sec2 and 𝜎<2.05 and brake was 

applied at v>55 km/hour. We can define the driving score S as given by (14): 

 

𝑆 = 𝑓(𝑎, 𝜎, 𝑣) (14) 

 

To represent the negative effect on driving scores when the conditions are met, we can introduce a 

penalty function P as: 

 

𝑃 = {
𝑘, 𝑖𝑓 𝑎 < 2.74 𝑎𝑛𝑑 𝜎 < 2.05 𝑎𝑛𝑑 𝑣 > 55
0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 (15) 

 

where k is a positive constant that represents the penalty value. Then, the driving score S can be modeled as 

shown in (16): 

 

𝑆 = 𝑆0 − 𝑃(𝑎, 𝜎, 𝑣) (16) 

 

where, S0 is the initial driving score before the penalty. 

If in the first 1.5 seconds, a force of 56.69 kg is experienced, then hard braking will be experienced. 

Sudden unintended acceleration (SUA) is described as an unplanned, sudden, high-power acceleration from a 

standing start, or a very slow starting speed combined with what appears to be a loss of braking efficiency as 

shown in Figure 2. 

When a vehicle speeds up suddenly, acceleration (ax) on x-axis remains flat while acceleration (ay) 

on y-axis sharply goes up. Thus, the standard deviation (σ𝑎𝑥
) and value range of acceleration on x-axis are 

small. And ax(t) is x-axis accel as a time-function, ay(t) is y-axis accel as a time-function, σ𝑎𝑥
 is denotes 

standard deviation of ax and R𝑎𝑥
 is value range of ax. Given that ax remains flat, we can represent as (17) a 

constant (C): 

 

𝑎𝑥(𝑡) = 𝐶 (17) 

 

given that ay sharply increases, we can model it as a step function or an exponential function. A step function 

(S) is a simple way to represent a sudden increase: 

 

𝑆 = {
0, 𝑖𝑓 𝑡 < 𝑡0

𝐴, 𝑖𝑓 𝑡 ≥ 𝑡0
 (18) 

 

where A is the sharp increase in acceleration at time t0. Alternatively, an exponential function as given below 

can represent a sharp increase more smoothly: 

 

𝑎𝑦(𝑡) = 𝐴(1 − 𝑒−𝜆(𝑡−𝑡0)) (19) 

 

where λ is the rate at which ay increases, and t0 is the time when the vehicle starts to speed up suddenly. 

Since ax remains constant, therefore, 

The standard deviation σ𝑎𝑥
≈ 0 𝑎𝑛𝑑 The value range R𝑎𝑥

≈ 0 because ax does not vary. Hard 

acceleration is considered if acceleration >2.74 m/sec2. Some of the visual impressions of SUA could be car 

with blurred background, leaving tire marks, front end lifted and emitting smoke. when we rev up, fuel is 

squandered when the engine is revved up again without accomplishing any productive activity. This is seen 

as negative in our proposed approach for calculating driving score. 

The negative driving score S can be: 

 

𝑆 = −𝑘. 𝑓(𝑅). 𝛿(𝐺). 𝛿(𝑉) (20) 

 

where R, V, and G are the rpm, speed and gear respectively and k is a constant factor that determines the 

severity of the penalty. 

The indicator functions are given in (21) and (22). 
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𝛿(𝐺) = 1 𝑖𝑓 𝐺 = 0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒 𝛿(𝐺) = 0 (21) 

 

𝛿(𝑉) = 1 𝑖𝑓 𝑉 = 0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒 𝛿(𝑉) = 0 (22) 

 

Penalty function: ƒ(R)=max (0, R−900). This function returns the amount by which RPM exceeds 900. If 

RPM is 900 or less, the function returns 0. Therefore, the final score is given by (23). 

 

𝑆 = −𝑘. max (0, 𝑅 − 900). 𝛿(𝐺). 𝛿(𝑉) (23) 

 

The weaving pattern, as depicted in Figure 3, exhibits a sharp fluctuation in acceleration along the x-

axis, which persists for a certain amount of time. A negative score is awarded, if the SD (x-axis data) is large 

and the Range (x-axis data) is large and acceleration (y-axis data) is Smooth. Smoothness of acceleration 

(SmoothAy) can be evaluated as shown below using the mean absolute deviation (MAD) of the acceleration, 

a lower MAD indicates smoother acceleration. 

 

SmoothAy =
1

𝑛
∑ |𝐴𝑦,𝑖 − 𝐴̅𝑦|𝑛

𝑖=1   (24) 

 

where 𝐴𝑦,𝑖 is the individual acceleration data point and 𝐴̅𝑦 is the mean acceleration. For negative award 

function, the score should be high when SDx and Rx are high and SmoothAy is low (indicating smooth 

acceleration) as shown in (25): 

 

𝑆𝑐𝑜𝑟𝑒 = 𝑤1. (
𝑆𝐷𝑥

max (𝑆𝐷𝑥)
) + 𝑤2. (

𝑅𝑥

max (𝑅𝑥)
) − 𝑤3. (

SmoothAy̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅

max (SmoothAy)
) (25) 

 

where w1, w2, and w3 are weights that determine the relative importance of each term, and the terms are 

normalized by their maximum values to ensure they are comparable. Therefore, we can rewrite the model as: 

 

𝑆𝑐𝑜𝑟𝑒 = 𝑤1. (
𝑆𝐷𝑥

𝑆𝐷𝑥,𝑚𝑎𝑥
) + 𝑤2. (

𝑅𝑥

𝑅𝑥,𝑚𝑎𝑥
) − 𝑤3. (

SmoothAy̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅

SmoothAy̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅
𝑚𝑎𝑥

) (26) 

 

where, SDx is standard deviation of x-axis data; 𝑆𝐷𝑥,𝑚𝑎𝑥 is maximum standard deviation observed in the 

dataset; Rx is range of x-axis data; Rx,max is maximum range observed in the dataset; SmoothAy̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅ is mean 

absolute deviation of acceleration along y-axis; SmoothAy̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅
max is maximum mean absolute deviation 

observed in the dataset; and w1, w2, w3 are weights to balance the components (can be tuned based on 

empirical data or specific requirements). 

Swerving is an enormous peak in acceleration on the x-axis is observed when swerving takes place, 

as illustrated in Figure 4. The negative score S can be formulated as (27): 

 

𝑆 = 𝑤1. 𝑝𝑒𝑎𝑘(𝑎𝑥) + 𝑤2. 𝑟𝑎𝑛𝑔𝑒(𝑎𝑥) + 𝑤3.𝜎(𝑎𝑥) + 𝑤4. |𝜇(𝑎𝑥)| − 𝑤5. 𝑓𝑙𝑎𝑡𝑛𝑒𝑠𝑠(𝑎𝑦) (27) 

 

where, w1, w2, w3, w4, and w5 are weights that can be adjusted based on the importance of each factor, 

flatness(𝑎𝑦) is inversely proportional to the variability of 𝑎𝑦. A potential measure could be the reciprocal of 

the standard deviation of 𝑎𝑦: 

 

𝑓𝑙𝑎𝑡𝑛𝑒𝑠𝑠(𝑎𝑦) =
1

𝜎(𝑎𝑦)+𝜀
 (28) 

 

where ϵ is a small constant to avoid division by zero. 

Sideslipping is shown in Figure 5, sideslipping causes a rapid decline in y-axis acceleration. The 

driving score S can be written as(29). 

 

𝑆 = 𝑤1. max (|
𝑑𝑎𝑦

𝑑𝑡
|) + 𝑤2. (−𝑚𝑖𝑛(𝑎𝑦)) + 𝑤3. (−𝑎̅𝑦) + 𝑤4. (max(𝑎𝑦) − min(𝑎𝑦)) + 𝑤5. |𝑎̅𝑥| (29) 

 

To balance the importance of each component, we might choose w1, w2, w3, w4, and w5 as 

.1,.5,.5,.3 and .2 respectively. These weights can be adjusted based on empirical data or specific application 

needs. max (|
𝑑𝑎𝑦

𝑑𝑡
|) denotes sharp fall in ay can quantify the sharp fall by looking at the second derivative 

(jerk) or by defining a threshold for the rate of change. 
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𝑚𝑖𝑛(𝑎𝑦)denotes minimum value of 𝑎𝑦: min(ay)<0 

𝑎̅𝑦 denotes mean value of 𝑎𝑦: 𝑎̅𝑦<0 

max(𝑎𝑦) − min(𝑎𝑦) denotes range of 𝑎𝑦 and ensures this value is large. 

|𝑎̅𝑥|denotes mean value of 𝑎𝑥 not near zero, indicating significant sideways motion. 

A fast U turn is the case when a driver makes a sudden U-turn shown Figure 6, to the right or left,  

x-axis acceleration increases rapidly to a very high value or decreases rapidly to a very low value, 

respectively. The driving score S can be modeled as a function of 5 tuples as given in (30): 

 

𝑆 = 𝑓 (𝜇𝑎𝑥
, 𝜎𝑎𝑥

, 𝑅𝑎𝑥
, 𝜇𝑎𝑦

, 𝑇) (30) 

 

where 𝜇𝑎𝑥
 is the mean of 𝑎𝑥, 𝜎𝑎𝑥

 is the standard deviation of 𝑎𝑥,𝑅𝑎𝑥
 is the range of 𝑎𝑥, 𝜇𝑎𝑦

 is the mean of 𝑎𝑦 

and T is the time duration of the maneuver. A form (31) for the driving score could be: 

 

𝑆 = 𝑘1. |𝜇𝑎𝑥
| + 𝑘2. 𝜎𝑎𝑥

+ 𝑘3. 𝑅𝑎𝑥
+ 𝑘4. (1 −

|𝜇𝑎𝑦|

max(|𝑎𝑦|)
) + 𝑘5. 𝑇 (31) 

 

where 𝑘1, 𝑘2, 𝑘3, 𝑘4, and 𝑘5 are weighting coefficients that determine the importance of each term. These 

coefficients can be adjusted based on empirical data or specific requirements for the driving score. 

 

 

   
   

Figure 1. Sudden braking Figure 2. Sudden unintended 

acceleration 

Figure 3. Weaving movement 

   

   

   
 

Figure 4. Swerving movement 

 

Figure 5. Sideslipping movement 

 

Figure 6. Fast U turn movement 

 

 

Various mathematical models were developed, and the dataset was analyzed using classification 

algorithms in Python ML. The supervised algorithms applied include AdaBoost, RF, K-nearest neighbor 

(KNN), Naive Bayes, and logistic regression. The AdaBoost algorithm, an instance of adaptive boosting 

methodology, serves as a ML algorithm employed for classification, by amalgamating numerous weak 

classifiers to form a robust classifier while an ensemble learning technique called RF constructs several 

decision trees and aggregates their predictions to increase accuracy. KNN uses the majority label of their 

closest neighbours to categorise data points. Based on Bayes' Theorem, a probabilistic classifier assumes that 
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characteristics are conditionally independent. For each training sample (xi, yi) is assigned a weight 𝑤𝑖 . 

Initially, all weights are set equally. 

 

𝑤𝑖 =
1

𝑁
 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑖 (32) 

 

For each iteration t=1…up to T (T being the total number of iterations), a weak classifier ht(x) is 

trained using the weighted training-data and compute the classification error ϵt of ht as (33): 

 

∈𝑡= ∑ 𝑤𝑖 . 𝟏(ℎ𝑡(𝑥𝑖) ≠ 𝑦𝑖)𝑁
𝑖=1  (33) 

 

where, 1 is the indicator function. 

Then calculate the weight αt for the weak classifier as (34): 

 

𝛼𝑡 =
1

2
𝑙𝑛 (

1−∈𝑡

∈𝑡
) (34) 

 

𝑤𝑖
(𝑡+1)

= 𝑤𝑖
𝑡exp (−𝛼𝑡𝑦𝑖ℎ𝑡(𝑥𝑖)) (35) 

 

the weight is normalized using (36): 

 

𝑤𝑖
(𝑡+1)

=
𝑤𝑖

(𝑡+1)

∑ 𝑤
𝑗
(𝑡+1)𝑁

𝑗=1

 (36) 

 

the final strong classifier is (37). 

 

𝐻(𝑥) = 𝑠𝑖𝑔𝑛(∑ 𝛼𝑡ℎ𝑡(𝑥𝑖)𝑇
𝑡=1 ) (37) 

 

The parameters 𝛼𝑡 play a crucial role in determining the impact of each weak classifier on the 

ultimate decision, giving priority to classifiers that exhibit strong performance on the weighted training 

dataset. Drivers’ ranks are awarded on the scale of 10 with 10 being excellent driving behavior. For every 

mistake committed, negative points will be rewarded in total score. Table 1 shows the score determinant. 

 

 

Table 1. Driving score determinant 
Driving parameters Effect on driving score Impact on driving score 

Fuel_cons -ve HIGH 

Idle_Eng -ve HIGH 
Eng_Load +ve MODERATE 

HIGH_SPEED_BRAKING -ve HIGH 

SUA -ve HIGH 
REV_ENGINE -ve HIGH 

Weaving -ve HIGH 

Swerving -ve HIGH 
Sideslipping -ve HIGH 

Fast U Turn -ve HIGH 

 

 

4. RESULTS AND DISCUSSION 

Feature classification offers a visual representation of derived parameters for various driver-classes 

from ten drivers from D1 to D10 on honda brio at different terrain for 10 kms. Figure 7 reveals that driver 

classes D1, D3, and D7 achieve the highest driving scores, each incurring a single negative penalty for idle 

engine, high-speed braking, and idle engine, respectively. Similarly, the remaining parameters provide a clear 

visualization of the data, facilitating the development of a model to classify drivers. The result is based on the 

those driving classes mentioned which is uniqueness of this work and the accuracy is also highest as 

mentioned below. 

The driving behavior analysis [24] made and the accuracy was assessed using training and test 

dataset. The accuracy rates were as follows: AdaBoost at 77%, Naive Bayes at 88%, KNN at 98%, logistic 

regression at 99%, and RF at 100%. RF is substantially slower than all other classification techniques 

because it uses multiple decision trees for predictions and hence for speedy prediction we can assume logistic 

regression and KNN which also gives nice predictions. 
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Figure 7. Driving score 

 

 

5. CONCLUSION 

ML techniques such as Ada Boost, RF, KNN, Naive Bayes, and logistic regression, were used to 

develop and validate a model for classifying driving behavior. The suggested techniques were simple to use 

and quite accurate, with random forest's maximum accuracy of 100%. This approach is still beneficial and 

can aid the traffic police, insurance company, local government, and claim processing. The findings of this 

research may also have a direct bearing on the development of driving assistance and classification systems. 

Although contemporary tools and algorithms are employed in this research project, there is still much room 

for the occasional implementation of further contemporary software tools and algorithms in accordance with 

future requirements. The method that is being given is not exclusive to cars with internal combustion 

engines; it may also be applied to contemporary hybrid and electric vehicles. The recommended course of 

action is doable and adaptable to new technology. Delays in data gathering and storage have an impact on the 

suggested method's results; as a result, classification of behavior is not possible for short road journeys, 

particularly when the route or vehicle are different. 
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