Development of a machine learning-based framework for predicting failures in heat supply networks

Dauren Darkenbayev, Gulnar Balakayeva, Uzak Zhapbasbayev, Mukhit Zhanuzakov

Abstract


The increasing complexity and scale of heat supply systems leads to a higher risk of failures, which may cause significant economic and environmental consequences. This study develops a predictive mathematical framework for the early detection of emergency conditions in heat supply networks (HSNs) using machine learning (ML). The proposed approach is based on the LightGBM gradient boosting (GB) algorithm, chosen for its high accuracy and efficiency in handling large datasets. Real operational data (temperature, pressure, flow, and vibration) were considered. Data preprocessing, feature engineering (including SHAP analysis), and hyperparameter tuning with grid search and 5-fold cross-validation improved prediction quality. The model achieved accuracy of 85%, F1-score of 0.82, and receiver operating characteristic (ROC)-area under the curve (AUC) of 0.96, outperforming logistic regression (LR) and decision trees. The framework may be integrated into monitoring systems for predictive maintenance, reducing downtime and optimizing costs.

Keywords


Anomaly detection; Ensemble learning; Heat supply; Predictive maintenance; Real-time monitoring

Full Text:

PDF


DOI: https://doi.org/10.11591/eei.v14i6.10327

Refbacks

  • There are currently no refbacks.


Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

Bulletin of EEI Stats

Bulletin of Electrical Engineering and Informatics (BEEI)
ISSN: 2089-3191, e-ISSN: 2302-9285
This journal is published by the Institute of Advanced Engineering and Science (IAES) in collaboration with Intelektual Pustaka Media Utama (IPMU).