An efficient feature selection algorithm for health care data analysis

Mythily R., Aisha Banu.W, Dinesh Mavaluru

Abstract


Diabete is a silent killer, which will slowly kill the person if it goes undetected. The existing system which uses F-score method and K-means clustering of checking whether a person has diabetes or not are 100% accurate, and anything which isn't a 100% is not acceptable in the medical field, as it could cost the lives of many people. Our proposed system aims at using some of the best features of the existing algorithms to predict diabetes, and combine these and based on these features; This research work turns them into a novel algorithm, which will be 100% accurate in its prediction. With the surge in technological advancements, we can use data mining to predict when a person would be diagnosed with diabetes. Specifically, we analyze the best features of chi-square algorithm and advanced clustering algorithm (ACA). This research work is done using the Pima Indian Diabetes dataset provided by National Institutes of Diabetes and Digestive and Kidney Diseases. Using classification theorems and methods we can consider different factors like age, BMI, blood pressure and the importance given to these attributes overall, and singles these attributes out, and use them for the prediction of diabetes.


Keywords


Advanced clustering; Chi-square; Clustering; Fuzzy; M5

Full Text:

PDF


DOI: https://doi.org/10.11591/eei.v9i3.1744

Refbacks

  • There are currently no refbacks.




Bulletin of EEI Stats

Bulletin of Electrical Engineering and Informatics (BEEI)
ISSN: 2089-3191, e-ISSN: 2302-9285
This journal is published by the Institute of Advanced Engineering and Science (IAES) in collaboration with Intelektual Pustaka Media Utama (IPMU).