Stacking ensemble learning for optical music recognition

Francisco Calvin Arnel Ferano, Amalia Zahra, Gede Putra Kusuma

Abstract


The development of music culture has resulted in a problem called optical music recognition (OMR). OMR is a task in computer vision that explores the algorithms and models to recognize musical notation. This study proposed the stacking ensemble learning model to complete the OMR task using the common western musical notation (CWMN) musical notation. The ensemble learning model used four deep convolutional neural networks (DCNNs) models, namely ResNeXt50, Inception-V3, RegNetY-400MF, and EfficientNet-V2-S as the base classifier. This study also analysed the most appropriate technique to be used as the ensemble learning model’s meta-classifier. Therefore, several machine learning techniques are determined to be evaluated, namely support vector machine (SVM), logistic regression (LR), random forest (RF), K-nearest neighbor (KNN), decision tree (DT), and Naïve Bayes (NB). Six publicly available OMR datasets are combined, down sampled, and used to test the proposed model. The dataset consists of the HOMUS_V2, Rebelo1, Rebelo2, Fornes, OpenOMR, and PrintedMusicSymbols datasets. The proposed ensemble learning model managed to outperform the model built in the previous study and succeeded in achieving outstanding accuracy and F1-scores with the best value of 97.51% and 97.52%, respectively; both of which were achieved by the LR meta-classifier.

Keywords


Common western musical notation; Convolutional neural network; Ensemble learning; Machine learning; Optical music recognition

Full Text:

PDF


DOI: https://doi.org/10.11591/eei.v12i5.5129

Refbacks

  • There are currently no refbacks.


Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

Bulletin of EEI Stats

Bulletin of Electrical Engineering and Informatics (BEEI)
ISSN: 2089-3191, e-ISSN: 2302-9285
This journal is published by the Institute of Advanced Engineering and Science (IAES) in collaboration with Intelektual Pustaka Media Utama (IPMU).