A novel modified mountain gazelle optimizer for tuning parameter proportional integral derivative of DC motor
Widi Aribowo, Laith Abualigah, Diego Oliva, Aditya Prapanca
Abstract
This article presents a modified method of mountain gazelle optimizer (MMGO) as a direct current (DC) motor control. Mountain gazelle optimizer (MGO) is an algorithm inspired by the life of the mountain gazelle animal in nature. This animal concept has five essential steps that are duplicated in mathematical modeling. This article uses two tests to get the performance of the MMGO method. The first test uses a benchmark function test with a comparison method, namely the sine tree seed algorithm (STSA) and the original MGO. The second test is the application of MMGO as a DC motor control. The simulation results show that MMGO can reduce the overshoot of conventional proportional integral derivative (PID) control by 0.447% and has a better integral time square error (ITSE) value of 5.345 than conventional PID control. Thus, the MMGO method shows promising performance.
Keywords
Direct current motor; Mountain gazelle optimizer; Novel modified; Proportional integral derivative; Metaheuristic
DOI:
https://doi.org/10.11591/eei.v13i2.5575
Refbacks
There are currently no refbacks.
This work is licensed under a
Creative Commons Attribution-ShareAlike 4.0 International License .
<div class="statcounter"><a title="hit counter" href="http://statcounter.com/free-hit-counter/" target="_blank"><img class="statcounter" src="http://c.statcounter.com/10241695/0/5a758c6a/0/" alt="hit counter"></a></div>
Bulletin of EEI Stats
Bulletin of Electrical Engineering and Informatics (BEEI) ISSN: 2089-3191, e-ISSN: 2302-9285 This journal is published by the Institute of Advanced Engineering and Science (IAES) in collaboration with Intelektual Pustaka Media Utama (IPMU) .