Image quality evaluation: evaluation of the image quality of actual images by using machine learning models

Shiva Shankar Reddy, Veeranki V. R. Maheswara Rao, Kalidindi Sravani, Silpa Nrusimhadri

Abstract


Evaluating image features is a significant step in image processing in applications like number plate detection, vehicle tracking and many image processing-based applications. Image processing-based applications need accurate parts to get the best outcomes. Feature detection is done based on various feature detection techniques. The proposed system aims to get the best feature detector based on the input images by evaluating the image features. For assessing the image features, the proposed system worked on various descriptors like oriented FAST and rotated brief (ORB), learned arrangements of three patch codes (LATCH), binary robust independent elementary features (BRIEF), and binary robust invariant scalable keypoints (BRISK) to extract and evaluate the features using K-nearest neighbor (KNN)-matching and retrieve the inliers of the matching. Each descriptor produces different matching features and inliers; with the matchings and inliers, the inlier ratio calculates to show the analysis. To increase performance, we also examine adding depth information to descriptors.

Keywords


Deep learning; Image feature; Image quality evaluation; Inlier extraction; Machine learning

Full Text:

PDF


DOI: https://doi.org/10.11591/eei.v13i2.5947

Refbacks

  • There are currently no refbacks.


Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

Bulletin of EEI Stats

Bulletin of Electrical Engineering and Informatics (BEEI)
ISSN: 2089-3191e-ISSN: 2302-9285
This journal is published by the Institute of Advanced Engineering and Science (IAES) in collaboration with Intelektual Pustaka Media Utama (IPMU).