Speech emotion recognition with optimized multi-feature stack using deep convolutional neural networks

Muhammad Farhan Fadhil, Amalia Zahra

Abstract


The human emotion in communication plays a significant role that can influence how the context of the message is perceived by others. Speech emotion recognition (SER) is one of a field study that is very intriguing to explore because human-computer interaction (HCI) related technologies such as virtual assistant that are implemented nowadays rarely considered the emotion contained in the information relayed by human speech. One of the most widely used ways to perform SER is by extracting features of speech such as mel frequency cepstral coefficient (MFCC), mel-spectrogram, spectral contrast, tonnetz, and chromagram from the signal and using a one-dimensional (1D) convolutional neural network (CNN) as a classifier. This study shows the impact of implementing a combination of an optimized multi-feature stack and optimized 1D deep CNN model. The result of the model proposed in this study has an accuracy of 90.10% for classifying 8 different emotions performed on the ryerson audio-visual database of emotional speech and song (RAVDESS) dataset.

Keywords


Convolutional neural network; Mel frequency cepstral coefficient; Multi-feature stack; Optimized deep convolutional neural network; Speech emotion recognition

Full Text:

PDF


DOI: https://doi.org/10.11591/eei.v13i6.6044

Refbacks

  • There are currently no refbacks.


Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

Bulletin of EEI Stats

Bulletin of Electrical Engineering and Informatics (BEEI)
ISSN: 2089-3191, e-ISSN: 2302-9285
This journal is published by the Institute of Advanced Engineering and Science (IAES) in collaboration with Intelektual Pustaka Media Utama (IPMU).