Reliability analysis in distribution system by deep belief neural network

Likhitha Ramalingappa, Prathibha Ekanthaiah, MD Irfan Ali, Aswathnarayana Manjunatha

Abstract


Rapid increase in the usage of intermittent renewable energy, ongoing changes in electrical power system structure and operational needs posing growing problems while ensuring adequate service reliability and retaining the quality of power. Power system reliability is a pertinent factor to consider while planning, designing, and operating distribution systems. utilities are obligated to offer their customers uninterrupted electrical service at the least cost while maintaining a satisfactory level of service quality. The important metrics for gauging the effect of distributed renewable energy on distribution networks is reliability analysis. Reliability analysis in distribution systems involves evaluating the performance and robustness of electrical distribution networks. An artificial intelligence approach is implemented in this paper to improve reliability analysis with dispersed generations in distribution network. Deep belief neural networks (DBNNs) are a type of artificial neural network that can be used for various tasks, including analyzing complex data such as those found in power distribution systems. This paper integrated a DBNN using a particle swarm optimization (PSO) technique. The proposed model performance is assessed using mean square error, mean absolute error, root mean square error, and R squared error. The findings reveal that reliability analysis with this novel technique is more accurate.

Keywords


Artificial neural network; Computation complexity; Deep belief neural network; Feed forward neural network; Particle swarm optimization; Power quality

Full Text:

PDF


DOI: https://doi.org/10.11591/eei.v13i2.6324

Refbacks

  • There are currently no refbacks.


Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

Bulletin of EEI Stats

Bulletin of Electrical Engineering and Informatics (BEEI)
ISSN: 2089-3191, e-ISSN: 2302-9285
This journal is published by the Institute of Advanced Engineering and Science (IAES) in collaboration with Intelektual Pustaka Media Utama (IPMU).