Exploratory analysis on the natural language processing models for task specific purposes

Ganeshayya Shidaganti, Rithvik Shetty, Tharun Edara, Prashanth Srinivas, Sai Chandu Tammineni

Abstract


Natural language processing (NLP) is a technology that has become widespread in the area of human language understanding and analysis. A range of text processing tasks such as summarisation, semantic analysis, classification, question-answering, and natural language inference are commonly performed using it. The dilemma of picking a model to help us in our task is still there. It’s becoming an impediment. This is where we are trying to determine which modern NLP models are better suited for the tasks set out above in order to compare them with datasets like SQuAD and GLUE. For comparison, BERT, RoBERTa, distilBERT, BART, ALBERT, and text-to-text transfer transformer (T5) models have been used in this study. The aim is to understand the underlying architecture, its effects on the use case and also to understand where it falls short. Thus, we were able to observe that RoBERTa was more effective against the models ALBERT, distilBERT, and BERT in terms of tasks related to semantic analysis, natural language inference, and question-answering. The reason is due to the dynamic masking present in RoBERTa. For summarisation, even though BART and T5 models have very similar architecture the BART model has performed slightly better than the T5 model.

Keywords


Natural language inference; Natural language processing; Question generation; Semantic analysis; Text summarization; Transformer model

Full Text:

PDF


DOI: https://doi.org/10.11591/eei.v13i2.6360

Refbacks

  • There are currently no refbacks.


Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

Bulletin of EEI Stats

Bulletin of Electrical Engineering and Informatics (BEEI)
ISSN: 2089-3191e-ISSN: 2302-9285
This journal is published by the Institute of Advanced Engineering and Science (IAES) in collaboration with Intelektual Pustaka Media Utama (IPMU).