Development and evaluation of a network intrusion detection system for DDoS attack detection using machine learning

Bharathi Ramachandra, T. P. Surekha

Abstract


Distributed denial of service (DDoS) attacks involves disrupting a target system by flooding it with an immense volume of traffic originating from numerous sources. These attacks can disrupt online services, causing financial losses and reputational damage to various organizations. To combat this threat, the proposed network intrusion detection system (NIDS) utilizes machine learning (ML) algorithms trained on the KDDCup99 dataset. This dataset encompasses a diverse array of network traffic patterns, bounded by both regular traffic and various attack types. By training the NIDS on this dataset, it becomes capable of accurately identifying DDoS attacks based on their distinctive patterns. The NIDS model is constructed using ML approaches like random forest (RF), support vector machines (SVM), and naive Bayes (NB). The developed NIDS is evaluated using performance metrics such as accuracy, precision, recall, F1-score, and receiver operating characteristic (ROC) curve. The proposed method demonstrates the NIDS’s accuracy of about 93%, precision of 99% and recall of 92% in detecting DDoS attacks, transforming it into a valuable tool for network security in comparison with the current methods. The study contributes to the domain of network security by providing an effective NIDS solution for detecting the DDoS attacks in the wireless sensor network.

Keywords


Data collection-KDDCup99 dataset; Distributed denial of service attack; Machine learning; Network intrusion detection system; Random forest

Full Text:

PDF


DOI: https://doi.org/10.11591/eei.v13i6.7565

Refbacks

  • There are currently no refbacks.


Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

Bulletin of EEI Stats

Bulletin of Electrical Engineering and Informatics (BEEI)
ISSN: 2089-3191, e-ISSN: 2302-9285
This journal is published by the Institute of Advanced Engineering and Science (IAES) in collaboration with Intelektual Pustaka Media Utama (IPMU).