CLAHE-AlexNet optimized deep learning model for accurate detection of diabetic retinopathy
Swetha G., Gaurav Gupta, Kantilal Pitambar Rane, Omkar M. Ghag, Sachin K. Korde, Sachin Lalar, Batyrkhan Omarov, Abhishek Raghuvanshi
Abstract
Diabetic retinopathy (DR) is a disease that affects the blood vessels that are located in the retina. Loss of vision due to diabetes is a common consequence of the illness and a key factor in the progression of vision loss and blindness. Both ophthalmology and diabetes research have become more dependent on computer vision and image processing techniques in recent years. Fundus photography, also known as a fundus image, is a method that may be used to capture an image of the back of a person's eye. This article presents optimized deep learning model for diagnostic marking in retinal fundus images towards accurate detection of retinopathy. For experimental work, 500 images were selected from available open source Kaggle data set. 400 images were used to train deep learning model and remaining 100 images were used to validate the model. Images were enhanced using the contrast limited adaptive histogram equalization (CLAHE) algorithm. Pre trained convolutional neural network (CNN) models-AlexNet, VGG16, GoogleNet, and ResNet are used for classification and prediction of images. Accuracy, specificity, precision and F1-score of AlexNet is better than VGG16, ResNet-50, and GoogleNet. Sensitivity of ResNet-50 is higher than other pre trained CNN models.
Keywords
Accuracy; AlexNet; Deep learning; F1 measure; Fundus image classification; ResNet-50; Retinopathy detection
DOI:
https://doi.org/10.11591/eei.v14i4.7854
Refbacks
There are currently no refbacks.
This work is licensed under a
Creative Commons Attribution-ShareAlike 4.0 International License .
<div class="statcounter"><a title="hit counter" href="http://statcounter.com/free-hit-counter/" target="_blank"><img class="statcounter" src="http://c.statcounter.com/10241695/0/5a758c6a/0/" alt="hit counter"></a></div>
Bulletin of EEI Stats
Bulletin of Electrical Engineering and Informatics (BEEI) ISSN: 2089-3191 , e-ISSN: 2302-9285 This journal is published by the Institute of Advanced Engineering and Science (IAES) in collaboration with Intelektual Pustaka Media Utama (IPMU) .