Computationally efficient ResNet based Telugu handwritten text detection
Buddaraju Revathi, M. V. D. Prasad, Naveen Kishore Gattim
Abstract
Optical character recognition (OCR) is a technological process that converts diverse document formats into editable and searchable data. Recognition of Telugu characters through OCR poses a challenge because of compound characters. Identifying handwritten Telugu text proves difficult due to the substantial number of characters, their similarities, and overlapping forms. To handle overlapping characters, we implemented a segmentation algorithm that efficiently separates these characters, consequently enhancing the model’s accuracy. Feature extraction is a crucial phase in recognizing a broader range of characters, especially those that are similar in appearance. So, we have employed a light weighted ResNet 34 model that effectively addresses these challenges and handles deep networks without declining accuracy as the network’s depth increases. We have achieved a word level recognition rate of 81.5%. In addition, the parameters required by the model are less when compared to its counterpart inception V1, making it computationally efficient.
Keywords
Bilateral filter; Convolution neural network; Deep learning; Inception; ResNet
DOI:
https://doi.org/10.11591/eei.v13i6.8170
Refbacks
There are currently no refbacks.
This work is licensed under a
Creative Commons Attribution-ShareAlike 4.0 International License .
<div class="statcounter"><a title="hit counter" href="http://statcounter.com/free-hit-counter/" target="_blank"><img class="statcounter" src="http://c.statcounter.com/10241695/0/5a758c6a/0/" alt="hit counter"></a></div>
Bulletin of EEI Stats
Bulletin of Electrical Engineering and Informatics (BEEI) ISSN: 2089-3191, e-ISSN: 2302-9285 This journal is published by the Institute of Advanced Engineering and Science (IAES) in collaboration with Intelektual Pustaka Media Utama (IPMU) .