Improving Arabic handwritten text recognition through transfer learning with convolutional neural network-based models
Hicham Lamtougui, Hicham El Moubtahij, Hassan Fouadi, Khalid Satori
Abstract
Arabic handwritten text recognition is a complex and challenging research domain. This study proposes an offline Arabic handwritten word recognition system based on transfer learning. The system exploits four pre-trained convolutional neural network (CNN) architectures, namely VGG16, ResNet50, AlexNet, and InceptionV3. In addition, a specialized image recognition model derived from the ImageNet dataset is incorporated. A combination strategy is designed to combine transfer learning with specific fine-tuning techniques, aiming to improve recognition accuracy. The study is conducted on the IFN/ENIT dataset, which includes images of Tunisian City and village names. The results show that the proposed system achieves a recognition accuracy of 94.73%, which is significantly higher than the accuracy rates achieved by previous approaches. These results suggest that the proposed system is a promising approach for Arabic handwritten text recognition.
Keywords
Arabic handwritten; IFN/ENIT; ResNet50; Transfer learning; VGG16
DOI:
https://doi.org/10.11591/eei.v13i6.8178
Refbacks
There are currently no refbacks.
This work is licensed under a
Creative Commons Attribution-ShareAlike 4.0 International License .
<div class="statcounter"><a title="hit counter" href="http://statcounter.com/free-hit-counter/" target="_blank"><img class="statcounter" src="http://c.statcounter.com/10241695/0/5a758c6a/0/" alt="hit counter"></a></div>
Bulletin of EEI Stats
Bulletin of Electrical Engineering and Informatics (BEEI) ISSN: 2089-3191, e-ISSN: 2302-9285 This journal is published by the Institute of Advanced Engineering and Science (IAES) in collaboration with Intelektual Pustaka Media Utama (IPMU) .