Understanding explainable artificial intelligence techniques: a comparative analysis for practical application
Shweta Bhatnagar, Rashmi Agrawal
Abstract
Explainable artificial intelligence (XAI) uses artificial intelligence (AI) tools and techniques to build interpretability in black-box algorithms. XAI methods are classified based on their purpose (pre-model, in-model, and post-model), scope (local or global), and usability (model-agnostic and model-specific). XAI methods and techniques were summarized in this paper with real-life examples of XAI applications. Local interpretable model-agnostic explanations (LIME) and shapley additive explanations (SHAP) methods were applied to the moral dataset to compare the performance outcomes of these two methods. Through this study, it was found that XAI algorithms can be custom-built for enhanced model-specific explanations. There are several limitations to using only one method of XAI and a combination of techniques gives complete insight for all stakeholders.
Keywords
Explainable artificial intelligence; Explainable artificial intelligence models; Explainable artificial intelligence techniques; Local interpretable model-agnostic explanations; Shapley additive explanations
DOI:
https://doi.org/10.11591/eei.v13i6.8378
Refbacks
There are currently no refbacks.
This work is licensed under a
Creative Commons Attribution-ShareAlike 4.0 International License .
<div class="statcounter"><a title="hit counter" href="http://statcounter.com/free-hit-counter/" target="_blank"><img class="statcounter" src="http://c.statcounter.com/10241695/0/5a758c6a/0/" alt="hit counter"></a></div>
Bulletin of EEI Stats
Bulletin of Electrical Engineering and Informatics (BEEI) ISSN: 2089-3191, e-ISSN: 2302-9285 This journal is published by the Institute of Advanced Engineering and Science (IAES) in collaboration with Intelektual Pustaka Media Utama (IPMU) .