No binding machine learning architecture for SDN controllers
Wael Hosny Fouad Aly, Hassan Kanj, Nour Mostafa, Zakwan Al-Arnaout, Hassan Harb
Abstract
Although software-defined networking (SDN) has improved the network management process, but challenges persist in achieving efficient load balancing among distributed controllers. Present architectures often suffer from uneven load distribution, leading to significant performance deterioration. While dynamic binding mechanisms have been explored to address this issue, these mechanisms are complex and introduce a significant latency. This paper proposes SDNCTRLML , a novel approach that applies machine learning mechanisms to improve load balancing. SDNCTRLML introduces a scheduling layer that dynamically assigns flow requests to controllers using machine learning scheduling algorithms. Unlike previous approaches, SDNCTRLML integrates with the standard SDN switches and adapts to different scheduling algorithms, minimizing disruption and network delays. Experimental results show that SDNCTRLML has outperformed static-binding controllers models without adding complexities of dynamic-binding systems.
Keywords
Artificial intelligence; Controller placement; Machine learning; Neural networks; Software-defined networking
DOI:
https://doi.org/10.11591/eei.v14i3.8483
Refbacks
There are currently no refbacks.
This work is licensed under a
Creative Commons Attribution-ShareAlike 4.0 International License .
<div class="statcounter"><a title="hit counter" href="http://statcounter.com/free-hit-counter/" target="_blank"><img class="statcounter" src="http://c.statcounter.com/10241695/0/5a758c6a/0/" alt="hit counter"></a></div>
Bulletin of EEI Stats
Bulletin of Electrical Engineering and Informatics (BEEI) ISSN: 2089-3191, e-ISSN: 2302-9285 This journal is published by the Institute of Advanced Engineering and Science (IAES) in collaboration with Intelektual Pustaka Media Utama (IPMU) .