Improved half-maximal inhibitory concentration regression model using amyotrophic lateral sclerosis data

Devipriya Selvaraj, Vijaya M S, Krishnaveni Sakkarapani

Abstract


The current research addresses the critical need for precise half-maximal inhibitory concentration regression in the neurodegenerative condition amyotrophic lateral sclerosis (ALS). Unavailable drug-induced gene expressions and irrelevant molecular descriptors have yielded regression models with less accuracy using traditional machine learning (ML). Drugs can be converted to graph format and integrated with gene expressions to learn drug-gene interactions better thereby producing precise half-maximal inhibitory concentration regression models. To accomplish this, three variants of graph neural networks (GNN) namely graph attention networks (GAT), message passing neural networks, and graph isomorphism networks are utilized in the proposed work. The gene expression profiles of ALS drugrelated genes were retrieved from the DepMap PRISM drug repurposing hub, and the drug graphs with their accompanying half-maximal inhibitory concentration values were obtained from the ChEMBL databases. The graph is constructed for ninety approved drugs connected to 32 key protein targets of ALS and its related conditions. The half-maximal inhibitory concentration regression model trained with optimized hyperparameters in GAT performs well with an R2 score of 0.92, a mean absolute error (MAE) of 0.20, and a root mean square error (RMSE) of 0.17. This model produced better results than other ML and deep learning models.

Keywords


Amyotrophic lateral sclerosis; Deep learning; Drug discovery; Gene expression; Regression

Full Text:

PDF


DOI: https://doi.org/10.11591/eei.v14i3.8520

Refbacks

  • There are currently no refbacks.


Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

Bulletin of EEI Stats

Bulletin of Electrical Engineering and Informatics (BEEI)
ISSN: 2089-3191, e-ISSN: 2302-9285
This journal is published by the Institute of Advanced Engineering and Science (IAES) in collaboration with Intelektual Pustaka Media Utama (IPMU).