QEMF for spatial domain pre-processing in iris biometrics: advancing accuracy and efficiency in recognition systems

Prajwalasimha Sindugatta Nagaraja, Naveen Kulkarani, Raghavendra M. Ichangi, Vinitha Varanamkudath, Sharanabasappa Tadkal, Ranjima Parakkal, Deepthika Karuppusamy

Abstract


This article presents a Quantum-Enhanced Median Filtering (QEMF) method for spatial domain pre-processing in iris biometrics, designed to improve image denoising and recognition accuracy. Traditional median filtering often struggles with high noise density, leading to inconsistencies in the denoised image. Our approach enhances the median filtering process by integrating quantum-inspired principles with statistical measures, combining median and average values of neighboring pixels. This hybrid strategy preserves the structural integrity of the original image while effectively reducing noise. Additionally, a quantum-based thresholding step is introduced in the final stage to minimize ambiguities and further enhance image quality. The proposed method is evaluated using approximately one hundred standard iris images from the Chinese University of Hong Kong (CUHK) dataset, considering four types of noise: Impulse, Poisson, Gaussian, and Speckle. Comparative analysis with conventional filters, including Median and Wiener filters, demonstrates that the QEMF method achieves 99.36% similarity to the original images, surpassing Median and Wiener filters by 1.32% and 0.34%, respectively. These results highlight the potential of quantum-enhanced filtering for improved denoising performance and increased efficiency in iris recognition systems.

Keywords


Biometric recognition; Iris biometrics; Quantum-based thresholding; Quantum-enhanced filtering; Spatial domain

Full Text:

PDF


DOI: https://doi.org/10.11591/eei.v14i3.9036

Refbacks

  • There are currently no refbacks.


Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

Bulletin of EEI Stats

Bulletin of Electrical Engineering and Informatics (BEEI)
ISSN: 2089-3191, e-ISSN: 2302-9285
This journal is published by the Institute of Advanced Engineering and Science (IAES) in collaboration with Intelektual Pustaka Media Utama (IPMU).