Driving behavior analytics: an intelligent system based on machine learning and data mining techniques

Areen Arabiat, Muneera Altayeb

Abstract


One of the most common causes of road accidents is driver behavior. To reduce abnormal driver behavior, it must be detected early on. Previous research has demonstrated that behavioral and physiological indicators affect drivers' performance. The goal of this study is to consider the feasibility of classifying driver behavior as either aggressive (sudden left or right turns, accelerating and braking), normal (average driving events) or slow (keeping a lower-than-average speed). Innovation in data mining and machine learning (ML) has allowed for the creation of powerful prediction tools. ML techniques have shown potential in predicting driver behavior, with classification being a critical study area. The data set was gathered using the Kaggle platform. This study classifies driver behavior using Orange3 data mining tools and tests several classifiers, including AdaBoost, CN2 rule inducer, and random forest (RF) classifiers. The results showed that AdaBoost was superior in predicting driver behavior, with 100% accuracy, while the classification accuracy in CN2 rule inducer and RF was 99.8% and 95.4%, respectively. These results demonstrate the possibility of early and highly accurate driver behavior prediction and use it to create a ML-based driver behavior detection system.

Keywords


AdaBoost; CN2 rule inducer; Driver behavior; Machine learning; Orange3 data mining tool

Full Text:

PDF


DOI: https://doi.org/10.11591/eei.v14i3.9095

Refbacks

  • There are currently no refbacks.


Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

Bulletin of EEI Stats

Bulletin of Electrical Engineering and Informatics (BEEI)
ISSN: 2089-3191, e-ISSN: 2302-9285
This journal is published by the Institute of Advanced Engineering and Science (IAES) in collaboration with Intelektual Pustaka Media Utama (IPMU).