Deep learning-based cellular traffic prediction for 4G long-term evolution networks using three models

Hassnaa Shindou, Yassine El Hasnaoui, Srifi Mohamed Nabil

Abstract


Wireless networks can be seen as the essential element of contemporary communication systems, connecting, in one way or another, billions of people and technologies all over the world. As a result, there is more of requirement from the area of application for models, which should be able to help in the analysis of the time series of mobile traffic to enhance the quality of service (QoS) in the present networks as well as in the future ones. The primary objective of this article is to develop effective artificial intelligence (AI) models for traffic load prediction in cellular networks. To achieve this, we employ three models; gated recurrent unit (GRU), bidirectional long short time memory (BiLSTM), and long short time memory (LSTM), to make numerical estimates of the network traffic at 4G long-term evolution (LTE) cell towers. The empirical results indicate that the BiLSTM model outperforms both the LSTM and GRU models, achieving root mean squared error (RMSE), mean absolute error (MAE), and R2 values of 86.64, 67.12, and 93.23%, respectively. Although this research focuses on traffic modeling for 4G LTE networks, the proposed models hold significant value for the development and optimization of the upcoming generations.

Keywords


4G long-term evolution network; Artificial intelligence; Mobile traffic; Traffic load prediction; Quality of service

Full Text:

PDF


DOI: https://doi.org/10.11591/eei.v14i3.9221

Refbacks

  • There are currently no refbacks.


Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

Bulletin of EEI Stats

Bulletin of Electrical Engineering and Informatics (BEEI)
ISSN: 2089-3191, e-ISSN: 2302-9285
This journal is published by the Institute of Advanced Engineering and Science (IAES) in collaboration with Intelektual Pustaka Media Utama (IPMU).