Tri-level lung cancer classification via deep learning based GoogleNet with computed tomography images

Vinoth Rathinam, Ramathilagam Arunagiri, Valarmathi Krishnasamy, Sasireka Rajendran

Abstract


Lung cancer (LC) is one of the most prevalent causes of cancer-related death worldwide. World Health Organization (WHO) classifies LC into two broad histological subtypes: non-small cell lung cancer (NSCLC) which is the cause of about 85% of cases and small cell lung cancer (SCLC) which makes up the remaining 15%. Several issues can influence LC detection including poor image quality, insufficient training data, low-quality image characteristics, and poor tumor localization. To overcome these challenges a novel TRI-level LC classification via deep learning-based GoogleNet with computed tomography (CT) images (TRI-LCNet) approach has been proposed for early-stage LC detection using CT images. Initially, the LC-input images CT are collected from openly accessible datasets. The lung CT images have been preprocessed using a Gaussian star filter (GaSF) to decrease noise, followed by feature extraction using GoogleNet. The extracted LC features are then given into a support vector machine (SVM) which is utilized as a classification tool to distinguish between different classes of LC cases. The TRI-LCNet approach performance was assessed by several metrics: specificity, accuracy, F1 score, and recall. The outcomes show that the suggested method obtains a higher accuracy range of 96.93% for the early identification of LC.

Keywords


Computed tomography images; Gaussian star filter; GoogleNet; Lung cancer; Support vector machine

Full Text:

PDF


DOI: https://doi.org/10.11591/eei.v14i3.9258

Refbacks

  • There are currently no refbacks.


Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

Bulletin of EEI Stats

Bulletin of Electrical Engineering and Informatics (BEEI)
ISSN: 2089-3191, e-ISSN: 2302-9285
This journal is published by the Institute of Advanced Engineering and Science (IAES) in collaboration with Intelektual Pustaka Media Utama (IPMU).