Numerical simulation of one-dimensional perovskite solar cell model

Saidatul Nur Aisyahtun Sakinah, Rahifa Ranom, Siti Hajar Basmin, Lee Jin Yao

Abstract


Perovskite solar cell (PSC) is one of the advanced third-generation solar cells that have rapid efficiencies but instability issues in terms of air, moisture, and UV light sensitivity becomes a barrier to commercialization. The instability issue is due to the charge accumulation at the interface of the PSC reducing its efficiency. This research focuses on the operation of PSCs through a one-dimensional (1D) drift-diffusion model for planar heterojunction PSCs. The model also accounts for the electric potential by Poisson’s equation, the ion generation, and the recombination rate. The method of lines technique is applied to solve the model for the perovskite layer numerically using the finite difference method which is then solved forward in time using the ‘ode15s’ solver in MATLAB. It is highlighted that the comparison with the experimental data from the reference shows good agreement. The effect of parameter thickness variation of the perovskite layer upon the efficiency of PSCs is analyzed. The result shows that the best efficiency obtained is 19.77% obtained at thickness 0.25 𝜇𝑚. The results may prove useful for a guideline of the cell thickness that predicts the perovskites cell performance.

Keywords


Drift-diffusion; Mathematical modeling; One-dimensional; Perovskite; Solar cell

Full Text:

PDF


DOI: https://doi.org/10.11591/eei.v13i4.6463

Refbacks

  • There are currently no refbacks.


Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

Bulletin of EEI Stats

Bulletin of Electrical Engineering and Informatics (BEEI)
ISSN: 2089-3191, e-ISSN: 2302-9285
This journal is published by the Institute of Advanced Engineering and Science (IAES) in collaboration with Intelektual Pustaka Media Utama (IPMU).