Torque control of PMSM motors using reinforcement learning agent algorithm for electric vehicle application

Vo Thanh Ha, Duong Anh Tuan, Tran Thuy Van

Abstract


As electric vehicles (EVs) demand higher performance and efficiency, precise torque control in interior permanent magnet synchronous motors (IPMSMs) becomes increasingly vital. This paper introduces a reinforcement learning (RL)-based method to optimize torque control in IPMSMs. The RL agent is trained to regulate d-axis and q-axis currents, producing stator voltages to follow the desired motor speed. The control system includes an observation vector, voltage-based actions, and a specially designed reward function. Due to the nonlinear dynamics of the motor, training the agent requires significant computational effort. MATLAB/Simulink simulations are performed to compare the RL controller with a traditional PI controller. Results indicate that the RL controller delivers quicker and more accurate performance, although additional training is necessary to minimize overshoot.

Keywords


Electric vehicles; Field-oriented control; Interior-mounted permanent magnet synchronous motors; Reinforcement learning; Reinforcement learning agent

Full Text:

PDF


DOI: https://doi.org/10.11591/eei.v14i4.7852

Refbacks

  • There are currently no refbacks.


Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

Bulletin of EEI Stats

Bulletin of Electrical Engineering and Informatics (BEEI)
ISSN: 2089-3191e-ISSN: 2302-9285
This journal is published by the Institute of Advanced Engineering and Science (IAES) in collaboration with Intelektual Pustaka Media Utama (IPMU).