Torque control of PMSM motors using reinforcement learning agent algorithm for electric vehicle application
Vo Thanh Ha, Duong Anh Tuan, Tran Thuy Van
Abstract
As electric vehicles (EVs) demand higher performance and efficiency, precise torque control in interior permanent magnet synchronous motors (IPMSMs) becomes increasingly vital. This paper introduces a reinforcement learning (RL)-based method to optimize torque control in IPMSMs. The RL agent is trained to regulate d-axis and q-axis currents, producing stator voltages to follow the desired motor speed. The control system includes an observation vector, voltage-based actions, and a specially designed reward function. Due to the nonlinear dynamics of the motor, training the agent requires significant computational effort. MATLAB/Simulink simulations are performed to compare the RL controller with a traditional PI controller. Results indicate that the RL controller delivers quicker and more accurate performance, although additional training is necessary to minimize overshoot.
Keywords
Electric vehicles; Field-oriented control; Interior-mounted permanent magnet synchronous motors; Reinforcement learning; Reinforcement learning agent
DOI:
https://doi.org/10.11591/eei.v14i4.7852
Refbacks
There are currently no refbacks.
This work is licensed under a
Creative Commons Attribution-ShareAlike 4.0 International License .
<div class="statcounter"><a title="hit counter" href="http://statcounter.com/free-hit-counter/" target="_blank"><img class="statcounter" src="http://c.statcounter.com/10241695/0/5a758c6a/0/" alt="hit counter"></a></div>
Bulletin of EEI Stats
Bulletin of Electrical Engineering and Informatics (BEEI) ISSN: 2089-3191 , e-ISSN: 2302-9285 This journal is published by the Institute of Advanced Engineering and Science (IAES) in collaboration with Intelektual Pustaka Media Utama (IPMU) .