Residual pixel-wise semantic segmentation for assessing enlarged fetal heart: a preliminary study

Muhammad Taufik Roseno, Siti Nurmaini, Dian Palupi Rini, Tommy Saputra, Putri Mirani, Muhammad Naufal Rachmatullah, Annisa Darmawahyuni, Ade Iriani Sapitri, Hadi Syaputra

Abstract


The four-chamber view is a crucial scan plane routinely employed in both second-trimester perinatal screening and fetal echocardiographic examinations. Sonographers typically measure biometrics in this plane, such as the cardiothoracic ratio (CTR) and heart axis, to diagnose fetal heart anomalies. However, due to the echocardiographic artifacts, the assessment not only suffers from low efficiency but also inconsistent results depending on the operators’ skills. This study proposes a residual pixel-wise semantic segmentation, which segmented the fetal heart and thoracic contours in a 4-chamber view for assessing an enlarged fetal heart condition. The accuracy of intersection-over-union (IoU) and dice coefficient similarity (DCS) is used for model validation to further regulate the evaluation procedure. We use 1174 US images, comprising about 560 enlarged heart images, and about 614 normal heart images. Out of these data, 248 images are used for unseen data, and the remaining for training/validation processes. The performance of the proposed model, when tested on unseen data, achieved satisfactory results with 97.71% accuracy, 90.36% IoU, and 94.93% DCS. These metrics collectively demonstrate the satisfactory performance of the proposed model compared to existing segmentation models. The outcomes underscore that the proposed model establishes a state-of-the-art standard for enlarged fetal heart detection.

Keywords


Cardiomegaly; Fetal heart; Medical imaging; Residual network; Semantic segmentation

Full Text:

PDF


DOI: https://doi.org/10.11591/eei.v14i4.9244

Refbacks

  • There are currently no refbacks.


Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

Bulletin of EEI Stats

Bulletin of Electrical Engineering and Informatics (BEEI)
ISSN: 2089-3191e-ISSN: 2302-9285
This journal is published by the Institute of Advanced Engineering and Science (IAES) in collaboration with Intelektual Pustaka Media Utama (IPMU).